Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет» Факультет инновационных технологий

ОСНОВНАЯ ПРОГРАММА ПРОФЕССИОНАЛЬНОГО ОБУЧЕНИЯ

программа профессиональной подготовки по профессиям рабочих, должностям служащих

«Чертежник – конструктор»

Код профессии (при наличии) **и наименование профессии:** 27534 Чертежник-конструктор (по приказу от 14.07.2023 №534)

Квалификационный разряд, класс, категория: - *(при наличии)*

Трудоемкость: 220 часа

Форма обучения: очная

СОГЛАСОВАНО:

Начальник учебного управления

Декан факультета инновационных технологий

М.А. Игнатьева

С.В. Шидловский

Основная программа профессионального обучения разработана в соответствии с требованиями единого квалификационного справочника должностей руководителей, специалистов и служащих и федерального государственного образовательного стандарта среднего профессионального образования по профессии 151901.01 Чертежник-конструктор по профессии рабочего Чертежник-конструктор.

Организация-разработчик: Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет»

Разработчики:

Вехтер Евгения Викторовна, доцент кафедры управления качеством ФИТ ТГУ; Маликов Александр Викторович, старший преподаватель кафедры управление качеством ФИТ ТГУ.

Руководитель программы: Вехтер Евгения Викторовна, доцент кафедры управления качеством ФИТ ТГУ.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

основной программы профессионального обучения «Чертежник-конструктор»

Y C C C C C C C C C C	Наименование модулей / разделов /тем трудкост			Конта	актные часы		ODO.	Формы
№ п/п			лекции	практические занятия	лабораторные занятия	аттестация	СРС, ч	контроля
I	Инженерная графика	144	32	32			80	Экзамен
1	Раздел 1. Основы начертательной геометрии (техническая графика)	72	16	16			40	
1.1	Введение. Точка, прямая, плоскость. Метод проецирования. Проецирование точки на две и три плоскости проекций. Прямая. Задание и изображение на чертеже. Положение относительно плоскостей проекций.	10	2	2			6	
1.2	Методы проецирования. Взаимное положение двух прямых. Взаимное положение прямой и плоскости. Взаимное положение двух плоскостей. Способ перемены плоскостей проекций.	20	6	4			10	Задание 1
1.3	Поверхности. Определение, задание и изображение на чертеже. Классификация. Понятие об определителе и очерке поверхности. Точки и линии на поверхности.	24	6	6			12	Задание 2

	Гранные поверхности, поверхности вращения. Винтовые поверхности. Взаимное пересечение поверхностей.	2				NEA.	
1.4	Аксонометрия. Теории аксонометрических проекций. Прямоугольная и косоугольная аксонометрические проекции. Стандартные аксонометрические проекции. Сечение геометрических тел плоскостями	18	2	4		12	
2	Раздел 2. Машиностроительное черчение	72	16	16		40	
2.1	Элементы технического черчения (выполнение чертежей изделий). Изображения – виды, разрезы, сечения. Условности и упрощения. Основные правила нанесения размеров на чертежах.	18	6	2		10	Задание 3
2.2	Резьбы. Резьбовые изделия. Соединения разъемные и неразъемные.	26	6	6		14	Задание 4
2.3	Чтение и деталирование чертежей общего вида. Знакомство с конструкторской документацией. Выполнение чертежей и деталей из заданного чертежа общего вида.	28	4	8		16	
II	Инженерное проектирование ¹	72			28	44	Зачет
3.1	Введение в компьютерную графику. Начальные сведения о САПР КОМПАС-3D	10	-		4	6	

¹ Соответствует дисциплине «Технологии проектирования БАС» учебного плана базового высшего образования ОПОП «Технологии проектирования и управления БАС», дисциплине «Инженерная графика» (лабораторные занятия) учебного плана базового высшего образования ОПОП «Управления инновациями в наукоемких технологиях» и ОПОП бакалавриата «Управление качеством в производственно-технологических системах»

Итого	вая аттестация	4	_	-		2	2	Квалификационный экзамен
3.6	Выполнение индивидуального проекта в САПР КОМПАС-3D с выходом на физическую модель изделия	24			6		18	Индивидуальный проект
3.5	Проектная конструкторская документация в соответствии со стандартами ЕСКД в САПР КОМПАС-3D	8			4		4	
3.4	Сборка в САПР КОМПАС-3D	8	-		4		4	F
3.3	Трехмерное моделирование в САПР КОМПАС-3D	12	-		6		6	Задание б
3.2	Выполнение чертежей 2D в САПР КОМПАС- ГРАФИК	10	-		4		6	Задание 5

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ХАРАКТЕРИСТИКА

основной программы профессионального обучения «Чертежник-конструктор»

общие положения

1.1. Нормативно-правовая база

Настоящая программа разработана в соответствии с:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- Приказ от 26 августа 2020 года № 438 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным программам профессионального обучения»;
- Приказ Министерства просвещения РФ от 14 июля 2023 г. № 534 «Об утверждении Перечня профессий рабочих, должностей служащих, по которым осуществляется профессиональное обучение»;
- Федеральный государственный образовательный стандарт среднего профессионального образования по профессии 151901.01 Чертежник-конструктор утвержден приказом Министерства образования и науки Российской Федерации от 2 августа 2013 г. N 825, зарегистрирован в Минюсте России 20 августа 2013 г. N 29618 (с изменениями на 9 апреля 2015 г., 13 июля 2021 г., 3 июля 2024 г.);
- Единый квалификационный справочник должностей руководителей, специалистов и служащих;
 - локальные нормативные акты ТГУ

1.2. Цель реализации программы

Целью реализации программы является формирование обучающихся профессиональных знаний, умений и навыков по профессии рабочего «Чертежникконструктор» в соответствии с единым квалификационным справочником должностей специалистов служащих федеральным руководителей, И И государственным образовательным стандартом среднего профессионального образования по профессии 151901.01 Чертежник-конструктор (утвержден приказом Министерства образования и науки Российской Федерации от 2 августа 2013 г. N 825, зарегистрирован в Минюсте России 20 августа 2013 г. N 29618 (с изменениями на 9 апреля 2015 г., 13 июля 2021 г., 3 июля 2024 г.), с присвоением рабочей профессии «Чертежник-конструктор».

1.3. Планируемые результаты обучения

Виды деятельности	Профессиональные	Практический опыт	Умения	Знания
	компетенции ППО			
	ПК 1.1. Выполнять и	- Сбор и анализ исходных	- выполнять комплексные	- законы, методы, приемы
	читать проектно -	данных для проектирования	чертежи геометрических тел и	проекционного черчения;
	конструкторскую	продукции и (или) ее элементов;	проекции точек, лежащих на их	правила выполнения и чтения
	документацию,	- Выполнять чертежи деталей,	поверхности;	конструкторской и
	основываясь на знании	чертежи общего вида,	- выполнять графические	технологической
	методов и приемов	габаритные и монтажные	изображения технологического	документации;
	проекционного	чертежи по эскизным	оборудования в ручной графике;	- правила оформления
	черчения и правилах	документам или с натуры;	- читать чертежи и схемы;	чертежей, геометрические
	ЕСКД	- Вычерчивать сборочные	- выполнять чертежи	построения и правила
		чертежи и выполнять их	технических деталей в ручной	вычерчивания технических
		деталировку в соответствии с	графике;	деталей;
		требованием ЕСКД;	- оформлять технологическую	- требования стандартов
Разработка конструкторской		- Оформлять чертежи и	и конструкторскую	Единой системы
документации (требуемого		спецификации в соответствии с	документацию в соответствии с	конструкторской
уровня проработки), в том		требованием ЕСКД.	технической документацией.	документации (далее - ЕСКД)
числе с использованием				и Единой системы
программы САПР, с				технологической
выходом на создание				документации (далее - ЕСКД)
физической модели (или				к оформлению и составлению
макета) изделия				чертежей.
	ПК 1.2. Осуществлять	- Разработка конструкторской	- выполнять чертежи в формате	- правила выполнения
	разработку чертежей и	документации (требуемого	2D для создания 3D-модели в	чертежей в формате 2D
	проектно -	уровня проработки) в	программном продукте	КОМПАС – График (составная
	конструкторской	программах САПР;	КОМПАС-3D;	часть КОМПАС 3D);
	документации с	- Создание компьютерных	- применять средства	- основные приемы 3D-
	использованием	моделей продукции (изделия) с	инженерной и компьютерной	моделирования в
	программы САПР	помощью специальных	графики;	программном продукте
	КОМПАС 3D, с	программ моделирования;	- выполнять схемы и чертежи	KOMΠAC-3D;
	выходом на физическую	- Выполнение отдельных работ	по специальности с	- основные приемы работы с
	модель	при создании макета или	использованием прикладных	чертежом на персональном
		физической модели продукции,	программных средств;	компьютере в программном
		в том числе с использованием	- оформлять проектную	продукте КОМПАС-3D.

аддитивных техноло руководством спо более высокого квалификации.	конструкторскую документацию в САПР КОМПАС 3D; - применять и использовать основные функциональные возможности современных графических систем; - моделировать в рамках графических систем.
---	---

При реализации настоящей программы в рамках конкретной ОПОП ВО соответствие компетенций устанавливается приложением 1.

- **1.4. Требования к поступающим, категория слушателей:** к освоению данной образовательной программы допускаются лица, имеющие среднее общее, среднее профессиональное или высшее образование.
- **1.5. Трудоемкость обучения:** 220 часов, включая все виды аудиторной и самостоятельной работы слушателя и время, отводимое на контроль качества освоения программы.
- **1.6. Форма обучения:** очная, в соответствии с календарным графиком основной образовательной программы высшего образования.

МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ПРОГРАММЫ

Наименование кабинета	Вид занятий	Материально-техническое оснащение
(мастерской, лаборатории и		(наименование оборудования, программного
т.д.)		обеспечения)
Учебная аудитория	Практические и	Технические средства обучения: компьютер,
	лекционные занятия	мультимедийный проектор, экран, маркерная
		доска
НОЦ "Центр молодежного	Лабораторные занятия	Компьютер обучающего с Монитором (10
инновационного творчества		шт)
"Интеллект"		
		Программное обеспечение САПР КОМПАС-
		3D (учебная версия)
		3D – принтер, лазерный станок с ЧПУ

ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ (формы аттестации, оценочные и методические материалы

Промежуточная аттестация

Промежуточная аттестация проводится по результатам освоения учебного плана в формате выполнения практических заданий по наиболее важным, с точки зрения практических навыков, темам. Формы и процедуры промежуточной аттестации по каждой теме доводятся до сведения обучающихся перед началом учебного процесса. Для допуска к итоговой аттестации (квалификационному экзамену) слушателю необходимо получить экзамен и/или зачет по модулям программы в соответствии с учебно-тематическим планом данной программы. Каждому слушателю для допуска к итоговой аттестации необходимо выполнить 5 практических заданий.

Итоговая аттестация

Итоговая аттестация результатов подготовки обучающихся осуществляется экзаменационной комиссией в форме квалификационного экзамена. Квалификационный экзамен проводится для определения соответствия полученных знаний, умений и навыков программе профессионального обучения по профессии «Чертежник-конструктор». Квалификационный экзамен включает в себя практическую квалификационную работу в виде выполнения проекта и проверку теоретических знаний в виде письменного экзамена по билетам в пределах квалификационных требований.

Лицам, успешно сдавшим квалификационный экзамен, по результатам освоения программы профессионального обучения выдается свидетельство по профессии/ должности служащего «Чертежник-конструктор».

Примеры вопросов теоретической части квалификационного экзамена

Результаты	Вопросы (пример)	Основные показатели оценки
(освоенные профессиональные	2	результата
компетенции)		
ПК 1.1. Выполнять и читать	Перечислить правила	Умение применять правила при
проектно - конструкторскую	выполнения на чертеже	выполнении чертежей
документацию, основываясь на	выносных и размерных линий	
знании методов и приемов	Как рекомендуется наносить на	Умение применять при
проекционного черчения и	чертеже повторяющиеся размеры	выполнении чертежей
правилах ЕСКД	радиусов, скруглений, сгибов.	
	Построить три проекции	Умение применять методы
	указанной в билете фигуры с	проецирования.
	вырезом	
	По двум проекциям построить	Умение применять правила
	третью, выполнить рациональные	выполнения проекционных
	разрезы и нанести размеры.	изображений и правила
		нанесения размеров.

Теоретическая часть квалификационного экзамена предполагает ответы на 2 теоретических вопроса и выполнение 2 задач, проверяющие умение использовать теоретические знания. Успешным считается результат 55% и более правильных ответов. Таким образом, максимально возможное количество баллов за прохождение экзамена составляет 20 баллов, минимально допустимое — 11 баллов.

В случае неудовлетворительного результата при прохождении экзамена слушатель не допускается к выполнению практической части экзамена.

Критерии оценки теоретической части экзамена:

- -Полнота ответов на теоретические вопросы (3 балла);
- -Полнота ответа при решении задачи (7 баллов).

На теоретическую часть квалификационного экзамена дается две попытки. В случае, если слушатель не справился с выполнением теоретической части квалификационного экзамена, допускается его пересдача в резервный день аттестации.

Примеры заданий практической части квалификационного экзамена

Результаты (освоенные профессиональные компетенции)	Задания	Основные показатели оценки результата
ПК 1.2. Осуществлять разработку чертежей с использованием программы САПР КОМПАС 3D, с выходом на физическую модель	Выполнить моделирование необходимых технических элементов изделия (в соответствии с тематикой проекта), разработать проектно - конструкторскую документацию, с выходом на макет или физическую модель	 Разработанные трехмерные модели. Разработанная проектно-конструкторская документация. Выполнен макет или физическая модель технического изделия, в соответствии с заданием.

Практическая часть квалификационного экзамена предполагает выполнение индивидуального или группового проекта по самостоятельно выбранной тематике. В процессе выполнения задания слушатель должен проанализировать исходное задание, разработать трехмерные модели разрабатываемого технического объекта, выполнить рабочие чертежи деталей, сборочной единицы и спецификацию. По разработанному пакету конструкторских документов выполнить макет или физическую модель объекта.

Распределение баллов осуществляется следующим образом:

- трехмерные модели деталей (2 балла);
- рабочие чертежи деталей (4 балла);
- сборочный чертеж и спецификация (5 балла);
- макет или физическая модель объекта (б балла);
- защита проекта (3 балла).

Таким образом, максимально возможное количество баллов за прохождение практической части квалификационного экзамена составляет 20 баллов.

Критерии оценки практической части экзамена:

0-10 баллов - оценка «не зачтено»;

11-20 баллов - оценка «зачтено».

Итоговое количество баллов, набранное за выполнение практической части, идет в суммарный зачет для выставления итоговой оценки за квалификационный экзамен.

На защиту практической части квалификационного экзамена дается две попытки. Выполнение практической части происходит синхронно по средствам защиты проекта. В случае, если слушатель не справился с выполнением практической части квалификационного экзамена, допускается его пересдача в резервный день аттестации.

Максимальное количество баллов за теоретическую и практическую части итогового квалификационного экзамена – 40 баллов.

Итоговая оценка

По результатам квалификационного экзамена выставляется оценка по пятибалльной шкале и присваивается квалификация. На основании баллов, полученных за теоретическую часть квалификационного экзамена и практическую часть квалификационного экзамена слушателю выставляется итоговая оценка по следующим критериям:

«Отлично» — выставляется, если количество баллов за теоретическую и практическую часть составляет 35-40 баллов.

«Хорошо» — выставляется, если количество баллов за теоретическую и практическую часть составляет 29-34 баллов.

«Удовлетворительно» – выставляется, если количество баллов за теоретическую и практическую часть составляет 23-28 баллов.

«Неудовлетворительно» — выставляется, если количество баллов составляет менее 22 баллов (программа не освоена слушателем).

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РАБОЧАЯ ПРОГРАММА Инженерная графика

Рабочая программа Инженерная графика является частью основной программы профессионального обучения «Чертежник - конструктор» по профессии рабочего «Чертежник-конструктор» и определяет результаты, содержание и условия обучения, обеспечивающие освоение вида деятельности (ВД): разработка проектной конструкторской документации (требуемого уровня проработки) с использованием программ САПР, с выходом на создание физической модели изделия.

Результатом освоения программы теоретической подготовки является овладение обучающимися видом деятельности: разработка конструкторской документации (требуемого уровня проработки) в соответствии с единым квалификационным справочником должностей руководителей, специалистов и служащих и федеральным государственным образовательным стандартом среднего профессионального образования по профессии 151901.01 Чертежник-конструктор утвержден приказом Министерства образования и науки Российской Федерации от 2 августа 2013 г. N 825, зарегистрирован в Минюсте России 20 августа 2013 г. N 29618 (с изменениями на 9 апреля 2015 г., 13 июля 2021 г., 3 июля 2024 г.), с присвоением рабочей профессии «Чертежник-конструктор».

Код	Наименование результата обучения
ПК 1.1. Выполнять и читать проектно - конструкторскую документацию, основываясь на знании методов и приемов проекционного черчения и правилах ЕСКД	Знать: — законы, методы, приемы проекционного черчения; — правила выполнения и чтения конструкторской и технологической документации; — правила оформления чертежей, геометрические построения и правила вычерчивания технических деталей; — требования стандартов Единой системы конструкторской документации (далее - ЕСКД) и Единой системы технологической документации (далее - ЕСТД) к оформлению и составлению чертежей.
	Уметь: — выполнять комплексные чертежи геометрических тел и проекции точек, лежащих на их поверхности; — выполнять графические изображения технологического оборудования в ручной графике; — читать чертежи и схемы; — выполнять чертежи технических деталей в ручной графике; — оформлять технологическую и конструкторскую документацию в соответствии с технической документацией.
	Практический опыт: - Сбор и анализ исходных данных для проектирования продукции и (или) ее элементов; - Выполнять чертежи деталей, чертежи общего вида, габаритные и монтажные чертежи по эскизным документам или с натуры; - Вычерчивать сборочные чертежи и выполнять их деталировку в соответствии с требованием ЕСКД; - Оформлять чертежи и спецификации в соответствии с требованием ЕСКД.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

№, наименование темы	Содержание лекций (кол-во часов)	Наименование практических занятий, с указанием формата работы (кол-во часов)	Виды СРС (кол-во часов)
Раздел 1. Основы наче	ертательной геометрии (т	техническая графика) (72 ч)	
Тема 1.1 Введение. Точка, прямая, плоскость. Метод проецирования. Проецирование точки на две и три плоскости проекций. Прямая. Задание и изображение на чертеже. Положение относительно плоскостей проекций. (10 ч)	Введение. Основы и методы (2ч)	Введение в программу. Обзор методов проецирования (2 ч)	Изучение литературы по теме, просмотр лекций, презентаций (6 ч)
Тема 1.2 Методы проецирования (20 ч)	Методы проецирования. Взаимное положение прямой и плоскости. Взаимное положение двух плоскостей. Способ перемены плоскостей проекций (6ч)	Методы проецирования. Взаимное положение прямой и плоскости. Взаимное положение двух плоскостей. Способ перемены плоскостей проекций (4ч)	Изучение литературы по теме, просмотр лекций, презентаций. Выполнение практического задания №1 «Шрифты» (10 ч)
Тема 1.3 Поверхности. Определение, задание и изображение на чертеже. Классификация. Понятие об определителе и очерке поверхности. Точки и линии на поверхности. Гранные поверхности вращения. Винтовые поверхности. Взаимное пересечение поверхностей. (24 ч)	Поверхности. Определение, задание и изображение на чертеже. Классификация. Понятие об определителе и очерке поверхности. (6 ч)	Точки и линии на поверхности. Гранные поверхности, поверхности вращения. Винтовые поверхности. Взаимное пересечение поверхностей. (6 ч)	Изучение литературы по теме, просмотр лекций, презентаций. Выполнение практического задания №2 «Поверхности и сечения» (12 ч)
Тема 1.4 Аксонометрия. Теории аксонометрических проекций. Прямоугольная и косоугольная аксонометрические проекции. Стандартные аксонометрические проекции. Сечение	Аксонометрия. Теории аксонометрических проекций. Прямоугольная и косоугольная аксонометрические проекции. (2 ч)	Стандартные аксонометрические проекции. Сечение геометрических тел плоскостями (4 ч)	Выполнение практического задания №2 «Поверхности и сечения» (12 ч)

геометрических тел			
плоскостями (18 ч)			
Раздел 2. Машиностро	оительное черчение (62 ч		
Тема 2.1 Элементы технического черчения (выполнение чертежей изделий). Изображения – виды, разрезы, сечения. Условности и упрощения. Основные правила нанесения размеров на чертежах. (18 ч)	Элементы технического черчения (выполнение чертежей изделий) (6ч)	Изображения — виды, разрезы, сечения. Условности и упрощения. Основные правила нанесения размеров на чертежах (2 ч)	Изучение литературы по теме, просмотр лекций, презентаций. Выполнение практического задания №3 «Изображения» (10 ч.)
Тема 2.2 Резьбы. Резьбовые изделия. Соединения разъемные и неразъемные. (26 ч)	Понятие резьб. Классификация резьбы. (6ч)	Соединения разъемные и неразъемные (6 ч)	Изучение литературы по теме, просмотр лекций, презентаций Выполнение практического задания №4. «Соединения разъёмные и неразъёмные» (14 ч.)
Тема 2.3 Чтение и деталирование чертежей общего вида. Знакомство с конструкторской документацией. Выполнение чертежей и деталей из заданного чертежа общего вида. (28 ч)	Чтение и деталирование чертежей общего вида (4 ч)	Выполнение эскиза детали и чертежей (8 ч)	Изучение литературы по теме. (16 ч.)

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ (организационно-педагогические) Материально-технические условия реализации программы:

Обучение по программе реализовано в очном формате, с применением активных технологий совместного обучения в электронной среде. Материал для самостоятельного изучения представляется в виде текстовых материалов, презентаций, размещаемых в LMS Moodle. Данные материалы сопровождаются заданиями и дискуссиями в чатах дисциплин.

Учебно-методическое и информационное обеспечение программы:

Методические рекомендации и пособия по изучению курса

Программа реализуется в формате очного обучения, с применением активных технологий совместного обучения в электронной среде LMS Moodle. Обучение в очной части реализуется в виде занятий лекционного и практического типа.

По данной программе имеется электронный учебно-методический комплекс в LMS Moodle. УМК содержит: систему навигации по программе (учебно-тематический план, интерактивный график работы по программе, сведения о результатах обучения, о преподавателях программы, чат для объявлений и вопросов преподавателям), презентации к лекциям, набор ссылок на внешние образовательные ресурсы и инструменты, систему заданий с подробными установкам, инструкции по работе с цифровыми сервисами, списки

основной и дополнительной литературы. В электронном курсе реализована система обратной связи, а также онлайн-площадки для взаимного обучения.

Литература

- Винокурова, Галина Федоровна. Курс лекций по начертательной геометрии: учебное пособие [Электронный ресурс] / Г. Ф. Винокурова, Б. Л. Степанов; Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра начертательной геометрии и графики (НГГ). 1 компьютерный файл (pdf; 1.5 МВ). Томск: Изд-во ТПУ, 2013. Заглавие с титульного экрана. Режим доступа: из корпоративной сети ТПУ. Системные требования: Adobe Reader.. Схема доступа: http://www.lib.tpu.ru/fulltext2/m/2013/m346.pdf
- Инженерная и компьютерная графика: учебник и практикум для вузов / Р. Р. Анамова [и др.]; под общей редакцией Р. Р. Анамовой, С. А. Леоновой, Н. В. Пшеничновой. 2-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 226 с. (Высшее образование). ISBN 978-5-534-16486-2. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/537164
- Начертательная геометрия / Фролов С.А., 2023г., 285 стр. Фролов https://znanium.ru/catalog/document?id=420590

Инженерная графика. Машиностроительное черчение/ Чекмарев А.А. – НИЦ ИНФРА-М, 2023, 396 стр. - https://znanium.ru/catalog/document?id=437654

- Чекмарев, Альберт Анатольевич. Черчение : справочник : учебное пособие для прикладного бакалавриата / А. А. Чекмарев, В. К. Осипов; Высшая школа экономики (ВШЭ), Национальный исследовательский университет (НИУ). 9-е изд., испр. и доп.. Москва: Юрайт, 2019. 359 с.: ил.. Бакалавр. Прикладной курс. Библиогр.: с. 358.. ISBN 978-5-534-04749-3.. —
- Инженерная 3D-компьютерная графика учебник и практикум для академического бакалавриата: в 2 т.: / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева; под ред. А. Л. Хейфеца. 3-е изд., перераб. и доп. . Москва : Юрайт , 2019 Т. 1 . 2019. 328 с.: ил.. Библиогр.: с. 327-328.. ISBN 978-5-534-02957-4.. —
- Чекмарев, Альберт Анатольевич. Начертательная геометрия: учебник для вузов / А. А. Чекмарев. // 2-е изд., испр. и доп. Электрон. дан. Москва: Юрайт, 2020. 147 с. (Высшее образование).. URL: https://urait.ru/bcode/452341
- В. С. Левицкий. Машиностроительное черчение и автоматизация выполнения чертежей: учебник для вузов : [для студентов высших технических учебных заведений] /В. С. Левицкий ; Моск. авиац. ин-т, "Приклад. физика" фак. N 9/ Москва : Юрайт , 2012, 464 с.: рис., табл.
- Начертательная геометрия. Инженерная графика : учебное пособие / Н. А. Антипина, С. П. Буркова, Е. В. Вехтер, Г. Ф. Винокурова, Р. Г. Долотова, О. К. Кононова, Е. А. Муратова, Л. А. Скачкова ; Томский политехнический ун-т. Томск : Издательство Томского политехнического университета, 2011. 257, [1] с.: ил. URL: https://www.lib.tsu.ru/limit/2022/koha000898302/koha000898302.pdf

КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ПРОГРАММЫ (формы аттестации, оценочные и методические материалы)

Для получения экзамена по дисциплине «Инженерная графика» предполагается получение ответов на 2 теоретических вопроса и вышолнение 2 задачи, проверяющие умение использовать теоретические знания. Успешным считается результат 55% и более правильных ответов. Таким образом, максимально возможное количество баллов за прохождение экзамена составляет 20 баллам минимально допустимое – 11 баллов.

В случае неудовлетворительного результата при прохождении экзамена слушатель не допускается к выполнению практической части экзамена.

Критерии оценки теоретической части экзамена:

- -Полнота ответов на теоретические вопросы (3 балла);
- -Полнота ответа при решении задачи (7 баллов).

На теоретическую часть квалификационного экзамена дается две попытки. В случае, если слушатель не справился с выполнением теоретической части квалификационного экзамена, допускается его пересдача в резервный день аттестации.

Перечень практических работ:

1. Практическое задание №1. «ГОСТы. Шрифты» Изучение ГОСТов.

2. Практическое задание №2. «Поверхности и сечения»

Решение кейса по основам начертательной геометрии.

3. Практическое задание №3. «Изображения»

Работа по созданию рабочего чертежа детали.

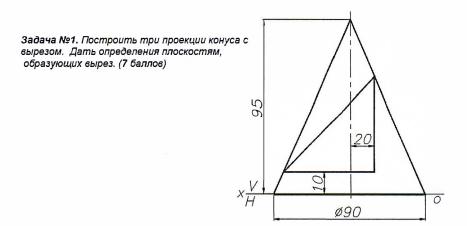
4. Практическое задание №4. «Соединения»

Выполнение чертежей по разъёмным и неразъёмным соединениям.

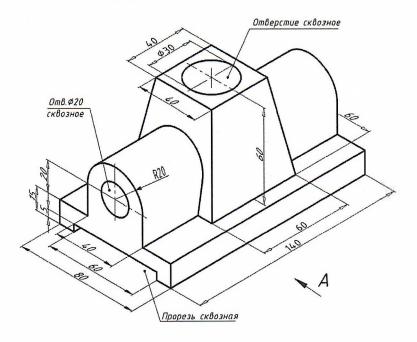
Экзаменационный билет состоит из двух частей. Продолжительность экзамена 3 часа.

Первая часть представляет собой два теоретических вопроса (примеры):

Раздел 1. Основы начертательной геометрии (техническая графика)


- 1. Основные способы проецирования.
- 2.Основные правила об ортогональных проекциях точки на плоскостном чертеже.
- 3. Прямые уровня и свойства их проекций.
- 4.Проецирующие прямые и свойства их проекций.
- 5. Определение натуральной величины отрезка прямой общего положения и углов наклона его к плоскостям проекций.
 - 6.Взаимное положение двух прямых.
- 7. Свойство проекций скрещивающихся прямых. Как определить видимость точек и прямых на чертеже?
 - 8. Теорема о проецировании прямого угла.
 - 9. Способы задания плоскости на чертеже.
- 10. Частные случаи расположения плоскостей проекций в пространстве и особенности их расположения на чертеже.

Раздел 2. Машиностроительное черчение


- 1.Виды наименование, изображение, обозначение. Виды основные, дополнительные и местные.
 - 2. Условности и упрощения, применяемые при выполнении видов.
- 3. Разрез наименование, изображение, обозначение. Для чего применяются разрезы?
 - 4. Типы разрезов в зависимости от количества секущих плоскостей.
- 5. Типы разрезов в зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций.
 - 6. Местный разрез наименование и изображение на чертеже.
 - 7. Условности и упрощения, применяемые при выполнении разрезов.
 - 8.Сечение наименование, изображение, обозначение.
 - 9. Условности и упрощения, применяемые при выполнении сечения.
 - 10.Выносной элемент наименование, изображение, обозначение.

Вторая часть представляет собой две задачи:

Примерные задачи для подготовки к экзамену:

Задача №2¦ Построить три изображения детали (1:1) и выполнить необходимые разрезы. Нанести размеры. (7 баллов)

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

РАБОЧАЯ ПРОГРАММА

Инженерное проектирование

Рабочая программа Инженерное проектирование является частью основной программы профессионального обучения «Чертежник-конструктор» по профессии рабочего «Чертежник-конструктор» и определяет результаты, содержание и условия обучения, обеспечивающие освоение вида деятельности (ВД): разработка проектной конструкторской документации (требуемого уровня проработки) с использованием программ САПР, с выходом на создание физической модели изделия.

Результатом освоения программы является овладение обучающимися видом деятельности: разработка конструкторской документации (требуемого уровня проработки) с использованием программы САПР, с выходом на создание физической модели изделия в соответствии с единым квалификационным справочником должностей руководителей, специалистов и служащих и федеральным государственным образовательным стандартом среднего профессионального образования по профессии 151901.01 Чертежник-конструктор утвержден приказом Министерства образования и науки Российской Федерации от 2 августа 2013 г. N 825, зарегистрирован в Минюсте России 20 августа 2013 г. N 29618 (с изменениями на 9 апреля 2015 г., 13 июля 2021 г., 3 июля 2024 г.), с присвоением рабочей профессии «Чертежник-конструктор»

Код	Наименование результата обучения
ПК 1.2. Осуществлять	Знать:
разработку чертежей с	правила выполнения чертежей в формате 2D КОМПАС – График
использованием САПР	(составная часть КОМПАС 3D);
КОМПАС 3D, с выходом	основные приемы 3D-моделирования в программном продукте
на физическую модель	KOMNAC-3D;
	основные приемы работы с чертежом на персональном компьютере
	в программном продукте КОМПАС-3D.
	Уметь:
	выполнять чертежи в формате 2D для создания 3D-модели в
	программном продукте КОМПАС-3D;
	применять средства инженерной и компьютерной графики;
	выполнять схемы и чертежи по специальности с использованием
	прикладных программных средств;
	оформлять проектную конструкторскую документацию в САПР
	КОМПАС 3D;
	применять и использовать основные функциональные возможности
	современных графических систем;
	моделировать в рамках графических систем.
	Практический опыт:
	Разработка конструкторской документации (требуемого уровня
	проработки) в программах САПР;
	Создание компьютерных моделей продукции (изделия) с помощью
	специальных программ моделирования;
	Выполнение отдельных работ при создании макета или физической
	модели продукции, в том числе с использованием аддитивных
_	технологий (под руководством специалиста более высокого уровня
	квалификации).

СОДЕРЖАНИЕ ОБУЧЕНИЯ

№, наименование темы	Наименование практических занятий, с указанием формата работы (кол-во часов)	Виды СРС (кол-во часов)
	е проектирование (72 ч)	
Тема 3.1 Введение в компьютерную графику. Начальные сведения о САПР КОМПАС-3D (10 ч)	Интерфейс программы КОМПАС 3D. Построение примитивов. Параметризация объектов, ограничения. Переменные. Виды и разрезы. Размеры. Оформление машиностроительных чертежей в САПР КОМПАС-3D (4 ч)	Изучение литературы по теме, работа в программе КОМПАС-3D (6 ч)
Тема 3.2 Выполнение чертежей 2D в САПР КОМПАС-ГРАФИК (10 ч)	Выполнение чертежей в 2D в САПР КОМПАС-ГРАФИК. Выполнение практического задания (4 ч)	Изучение литературы по теме, работа в программе КОМПАС. Выполнение практического задания № 4 «Построение изображения детали». (6 ч)
Тема 3.3 Трехмерное моделирование в САПР КОМПАС-3D (12 ч)	Основные понятия трехмерного моделирования (твердотельное, поверхностное, листовое и пр.). Создание и редактирование эскиза. Операции выдавливания. Создание тел, элементов тел, редактирование. Создания изогнутых деталей по заданной траектории. Создание рабочих плоскостей в детали. Проецирование геометрии одного эскиза на другой. Создание резьбовых отверстий и массивов отверстий. Добавление фасок и сопряжений в детали. Зеркальное отражение элементов. Выполнение практического задания (6ч)	Изучение литературы по теме, работа в программе КОМПАС-3D Выполнение практического задания № 5 «Построение 3-D модели». (6 ч)
Тема 3.4 Сборка в САПР КОМПАС-3D (8 ч)	Создание сборочной единицы, используя инструменты САПР КОМПАС-3D: дерево сборки, размещение компонентов в сборке, сопряжение деталей. Применение библиотек КОМПАС-3D. (4ч)	Изучение литературы по теме, работа в программе КОМПАС-3D (4 ч)
Тема 3.5 Проектная конструкторская документация в соответствии со стандартами ЕСКД в САПР КОМПАС- 3D (8 ч)	Создание чертежей по модели. Создание сборочного чертежа по сборке. Проставление позиций. Создание спецификаций в сборочных чертежах. Создание проектной конструкторской документации в соответствии со стандартами ЕСКД в САПР КОМПАС-3D. (44)	Изучение литературы по теме, работа в программе КОМПАС-3D (4 ч)
Тема 3.6 Выполнение индивидуального проекта в САПР КОМПАС-3D с выходом на физическую модель изделия (24 ч)	Выполнение индивидуального проекта с использованием САПР КОМПАС-3D. Определение и изучение способа выполнения физической модели, в том числе с использованием аддитивных технологий (под руководством специалиста более высокого уровня квалификации). Оформление проектной конструкторской документации в соответствии со стандартами ЕСКД в САПР КОМПАС-3D. (6 ч)	Изучение литературы по теме, работа в программе КОМПАС-3D. Изучение и использование ПО, соответствующего способу выполнения физической модели проекта Выполнение индивидуального задания (18 ч)

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ (организационно-педагогические) Материально-технические условия реализации программы:

Обучение по программе реализовано в очном формате, с применением активных технологий совместного обучения в электронной среде. Материал для самостоятельного изучения представляется в виде текстовых материалов, презентаций, размещаемых в LMS Moodle. Данные материалы сопровождаются заданиями и дискуссиями в чатах дисциплин.

Наименование кабинета (мастерской, лаборатории и т.д.)	Вид занятий	Материально-техническое оснащение (наименование оборудования, программного обеспечения)
Учебная аудитория	Практические и лекционные занятия	Технические средства обучения: компьютер, мультимедийный проектор, экран, маркерная доска
НОЦ "Центр молодежного инновационного творчества "Интеллект"	Лабораторные занятия	Компьютер обучающего с Монитором Программное обеспечение САПР КОМПАС- 3D (учебная версия)
		3D – принтер, лазерный станок с ЧПУ

Учебно-методическое и информационное обеспечение программы:

Методические рекомендации и пособия по изучению курса

Программа реализуется в формате очного обучения, с применением активных технологий совместного обучения в электронной среде LMS Moodle. Обучение в очной части реализуется в виде занятий лекционного и практического типа.

По данной программе имеется электронный учебно-методический комплекс в LMS Moodle. УМК содержит: систему навигации по программе (учебно-тематический план, интерактивный график работы по программе, сведения о результатах обучения, о преподавателях программы, чат для объявлений и вопросов преподавателям), презентации к лекциям, набор ссылок на внешние образовательные ресурсы и инструменты, систему заданий с подробными установкам, инструкции по работе с цифровыми сервисами, списки основной и дополнительной литературы. В электронном курсе реализована система обратной связи, а также онлайн-площадки для взаимного обучения.

Литература и интернет-ресурсы

- Инженерная 3D-компьютерная графика учебник и практикум для академического бакалавриата: в 2 т.: / А. Л. Хейфец, А. Н. Логиновский, И. В. Буторина, В. Н. Васильева; под ред. А. Л. Хейфеца. 3-е изд., перераб. и доп. . Москва : Юрайт , 2019 Т. 1 . 2019. 328 с.: ил.. Библиогр.: с. 327-328.. ISBN 978-5-534-02957-4.
- В. С. Левицкий. Машиностроительное черчение и автоматизация выполнения чертежей: учебник для вузов : [для студентов высших технических учебных заведений] /В. С. Левицкий ; Моск. авиац. ин-т, "Приклад. физика" фак. N 9/ Москва : Юрайт , 2012, 464 с.: рис., табл.
- Начертательная геометрия. Инженерная графика : учебное пособие / Н. А. Антипина, С. П. Буркова, Е. В. Вехтер, Г. Ф. Винокурова, Р. Г. Долотова, О. К. Кононова, Е. А. Муратова, Л. А. Скачкова ; Томский политехнический ун-т. Томск : Издательство Томского политехнического университета, 2011. 257, [1] с.: ил. URL: https://www.lib.tsu.ru/limit/2022/koha000898302/koha000898302.pdf
- Обучающие материалы Российское инженерное ПО для проектирования, производства и бизнеса «Аскон» https://kompas.ru/publications/video/;

КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ПРОГРАММЫ (формы аттестации, оценочные и методические материалы)

Для получения зачета по данному модулю слушатель должен выполнить и защитить индивидуальный или групповой проект. Проект выполняется в САПР КОМПАС-3D с выходом на физическую модель изделия и оформлением проектной конструкторской документацией в соответствии со стандартами ЕСКД. В процессе выполнения задания слушатель должен проанализировать исходное задание, разработать трехмерные модели разрабатываемого технического объекта, выполнить рабочие чертежи деталей, сборочной единицы и спецификацию. По разработанному пакету конструкторских документов выполнить макет или физическую модель объекта.

Распределение баллов осуществляется следующим образом:

- трехмерные модели деталей (2 балла);
- рабочие чертежи деталей (3 балла);
- сборочный чертеж и спецификация (4 балла);
- макет или физическая модель объекта (5 балла);
- защита проекта (2 балла).

Таким образом, максимально возможное количество баллов за индивидуальное задание составляет 16 баллов. (0 - 8 баллов – оценка «не зачтено», 9 - 16 баллов – «зачтено»)

Для допуска к защите индивидуального проекта, слушатель должен выполнить все практические задания, набрав суммарно не менее 3 баллов.

Практические задания оцениваются по следующей шкале:

- 0 баллов задание не принято: задание не выполнено или выполнено не полностью;
- 1 балл задание принято: присутствуют небольшие недочеты, некритичные для данной работы;
- 2 балла задание принято: работа выполнена полностью в соответствии с заданием.

Перечень практических заданий:

1. Практическое задание №4. «Построение изображения детали»

Работа над созданием вида изображения детали: по двум видам детали построить третий вид; выполнить необходимые разрезы (сечения).

2. Практическое задание №5. «Построение 3-D модели».

Построение 3-D модели по эскизу детали.