Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Технологии высокопроизводительной обработки больших данных

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения Очная

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности.
- ПК-1. Способен осуществлять программирование, тестирование и опытную эксплуатацию ИС с использованием технологических и функциональных стандартов, современных моделей и методов оценки качества и надежности программных средств.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.2. Использует методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения.
- ИОПК-2.3. Использует инструментальные средства высокопроизводительных вычислений в научной и практической деятельности.
 - ИПК-1.1. Определяет, согласовывает и утверждает требования заказчика к ИС
 - ИПК-1.2. Проектирует программное обеспечение.
- ИПК-1.3. Кодирует на языках программирования и проводит модульное тестирование ИС.

2. Задачи освоения дисциплины

- Обучить студентов различным методам организации высокопроизводительных вычислений,
- Сформировать навыки использования различных программных инструментов для организации параллельных вычислений.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль «Искусственный интеллект».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Основы программирования и Введение в интеллектуальный анализ данных.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 16 ч.
- -практические занятия: 32 ч.
 - в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Актуальность, базовая терминология и тенденции развития. Параллелизм компьютерных вычислений.

Краткое содержание.

Понятие высокопроизводительных вычислений. Способы повышения производительности вычислительной системы. Понятие параллельных вычислений. Причины, порождающие вычислительный параллелизм. Мультипроцессирование. Классификация уровней параллелизма, предложенная П. Треливеном. Векторная обработка данных. Многофункциональная обработка данных. Конвейер команд.

 Тема
 2. Архитектура
 высокопроизводительных
 вычислительных
 систем.

 Классификация вычислительных систем.

Краткое содержание.

Классификация вычислительных систем Флинна. Системы с одним потоком команд и одним потоком данных. Системы с одним потоком команд и множеством потоков данных. Системы с множеством потоков команд и одним потоком данных. Системы с множеством потоков команд и множеством потоков данных.

Классификация вычислительных систем с множеством потоков команд и множеством потоков данных. Системы с разделяемой памятью. Системы распределённой памятью. Вычислительные системы с централизованной общей памятью. распределённой общей Вычислительные системы c памятью. Симметричная многопроцессорная архитектура. Архитектура CC-NUMA. Архитектура Архитектура NCC-NUMA. Вычислители с массовым параллелизмом. Кластеры, их типы.

Тема 3. Грид-системы. Облачные технологии Краткое содержание.

Понятие грид-систем. Свойства грид-систем. Класс задач, эффективно решаемых с помощью грид-систем. Классификация грид-систем с точки зрения выделения вычислительных ресурсов. Примеры грид-систем. Понятие облачных технологий и вычислений. Свойства облачных технологий. Классификация облачных сервисов по типу ресурса, к которому предоставляется доступ. Классификация облачных сервисов по модели развёртывания. Технология обработки данных MapReduce. Сеть доставки содержимого. Обнаружение ресурсов в грид-системах. Соответствие виртуальной топологии и аппаратной архитектуры. Справедливое распределение ресурсов между приложениями.

Тема 4. Распределённые файловые системы.

Понятие распределённых файловых систем. Свойства распределённых файловых систем. Примеры распределённых файловых систем.

Тема 5. Общие вычисления на видеокарте: архитектура современных видеокарт и программные интерфейсы.

Понятие общих вычислений на видеокарте. Архитектура современных видеокарт в сравнении с архитектурой центрального процессора. Сравнение производительности современных видеокарт и центральных процессоров. Графический конвейер.

Программные интерфейсы для доступа к вычислительным ресурсам видеокарты, их классификация. Технология Nvidia CUDA, её архитектура и типы памяти. Способы оптимизации программ, написанных с применением технологии Nvidia CUDA.

Тема 6. Программирование для высокопроизводительных вычислений. Методология проектирования параллельных алгоритмов. Проблемы параллельного программирования. Методология организации параллельных вычислений для SIMD архитектуры. Методология организации параллельных вычислений для MIMD архитектуры. Показатели качества параллельных методов.

Библиотеки для обмена сообщениями. MPI (Message Passing Interface). OpenMP (Open Multi-Processing). Пример программы с использованием OpenMP. Шаблоны эффективной работы с памятью. Балансировка нагрузки в гетерогенных кластерах.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится в форме вопросов по лекционному материалу, лабораторных работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен по окончании изучения курса проводится в письменно-устной форме. Допуском до экзамена является выполнение двух лабораторных работ. При выполнении менее трёх лабораторных работ максимальная оценка на экзамене -4.

Оценка «отлично» ставится, если студент полноценно ответил на вопрос билета, а также на дополнительный вопрос, требующий аналитического сопоставления знаний, полученных при изучении различных тем данной дисциплины. Оценка «хорошо» ставится, если студент полноценно ответил на вопрос билета, но не ответил на дополнительный вопрос. Оценка «удовлетворительно» ставится, если студент частично ответил на вопрос билета.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в LMS iDo.
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) Методические указания по проведению лабораторных работ.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
 - S. Srinivasan Cloud Computing Basics electronic resource
 Springer New York: Imprint: Springer, 2014
 - A Ohri R for Cloud Computing electronic resource : An Approach for Data Scientists New York, NY : Springer New York : Imprint: Springer 2014
 - Zaigham Mahmood Cloud Computing: Methods and Practical Approache London: Springer London: Imprint: Springer XVII, 347 p. 97 illus.: online resource, 2013
- б) дополнительная литература:
 - Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, Peter Arbitter Cloud Computing Patterns electronic resource: Fundamentals to Design, Build, and

- Manage Cloud Applications Vienna : Springer Vienna : Imprint: Springer 2014
- Xiaolin Li, Judy Qiu Cloud Computing for Data-Intensive Applications electronic resource New York, NY: Springer New York: Imprint: Springer 2014
- Zaigham Mahmood Cloud Computing electronic resource : Challenges, Limitations and R&D Solutions New York, NY : Springer New York : Imprint: Springe 2014
- в) ресурсы сети Интернет:
 - MapReduce Tutorial https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html
 - HDFS Architecture Guide

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Visual Studio Community Edition 2013 (C++), библиотека классов, реализующая технологию MapReduce (например, https://github.com/cdmh/mapreduce). Все используемые программные продукты являются свободно распространяемыми.
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт − https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Для проведения практических работ требуются компьютеры, оснащённые дискретными видеокартами фирмы Nvidia с поддержкой технологии CUDA.

15. Информация о разработчиках

Дружинин Денис Вячеславович, канд.техн.наук, доцент кафедры теоретических основ информатики