Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Дополнительные главы физики твердого тела

по направлению подготовки

03.04.02 – Физика

Направленность (профиль) подготовки «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

Получить представления о современных методах исследования физических свойств и принципах работы приборов на основе полупроводниковых наноструктур.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Физика полупроводников. Микроэлектроника». Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины необходимо знание основ квантовой механики, термодинамики, статистической физики, физики твердого тела.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 24 часа, из которых:

– лекции: 24 ч.;

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Фононы в сверхрешетках.

Сложенные акустические и оптические фононы. Микроскопическое и макроскопическое описания. Электростатические эффекты в полярных кристаллах. Рамановское рассеяние в сверхрешетках. Модели электрон-фононного взаимодействия в сверхрешетках.

Тема 2. Оптические свойства полупроводниковых наноструктур

Оптические переходы в квантовых ямах и сверхрешетках. Анизотропия диэлектрической проницаемости и двойное лучепреломление. Фотоионизация квантовых

ям. Эффект Штарка при внутризонном поглощении. Экситонные эффекты в оптических спектрах. Фотолюминесценция полупроводниковых структур.

Тема 3. Мезоскопические приборы.

Лазеры с квантовыми ямами и точками. Фотоприемники на квантовых ямах. Приборы на основе баллистического транспорта. Квантовые интерференционные приборы. Резонансно туннельные приборы. Одноэлектронные приборы. Наноэлектронные диоды.

Тема 4. Нитриды AlN, GaN, InN: физические свойства и применение.

Кристаллическая структура, симметрия решетки, зонная структура. Спонтанная поляризация и пьезоэффект. Оптические и электрические свойства. Туннелирование электронов в двухбарьерных структурах. Штарковская лестница в ограниченных сверхрешетках. Оптоэлектронные приборы. Фотоприемники.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания аттестации

Экзамен проводится в устной форме по билетам, содержащим вопросы по курсу, предполагающие развернутый ответ и проверяющие ПК-1 и ИПК-1.2., а также по контрольным вопросам по материалу курса, требующим краткий ответ и проверяющим ИПК-1.1. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22922
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем. Санкт-Петербург: Наука, 2001. 160 с.
- 2. Шретер Ю.Г., Ребане Ю.Т., Зыков В.А., Сидоров В.Г. Широкозонные полупроводники. Санкт-Петербург: Наука, 2001. 125 с.
- 3. Воробьев Л.Е., Ивченко Е.Л., Фирсов Д.А., Шалыгин В.А. Оптические свойства наноструктур. Санкт-Петербург: Наука, 2001. 188 с.
 - б) дополнительная литература:
- 1. Ю. П., Кардона М. Основы физики полупроводников. М.: Физматлит, 2002. 560 с.
- 2. Кравченко А.Ф., Овсюк В.Н. Электронные процессы в твердотельных системах пониженной размерности. Новосибирск: Изд-во НГУ, 2000. 450 с.
- 3. Воробьев Л.Е., Данилов С.Н., Зегря Г.Г., Фирсов Д.А., Шалыгин В.А., Яссиевич И.Н., Берегулин Е.В. Фотоэлектрические явления в полупроводниковых и размерно-квантованных структурах. Санкт-Петербург: Наука, 2001. 248 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 96C IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Гриняев Сергей Николаевич, доктор физ.-мат. наук, ТГУ, кафедра физики полупроводников, доцент.