Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Дискретные математические модели

по направлению подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки: **Интеллектуальный анализ больших данных**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-4 Способен управлять получением, хранением, передачей, обработкой больших данных..

УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-4.1 Осуществляет мониторинг и оценку производительности обработки больших данных
- ИПК-4.2 Использует методы и инструменты получения, хранения, передачи, обработки больших данных
- ИПК-4.3 Разрабатывает предложения по повышению производительности обработки больших данных
- ИУК-1.1 Выявляет проблемную ситуацию, на основе системного подхода осуществляет её многофакторный анализ и диагностику.
- ИУК-1.2 Осуществляет поиск, отбор и систематизацию информации для определения альтернативных вариантов стратегических решений в проблемной ситуации.
- ИУК-1.3 Предлагает и обосновывает стратегию действий с учетом ограничений, рисков и возможных последствий.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- индивидуальные домашние практические задания и их защита.
- коллоквиум по определениям и понятиям.

Примеры индивидуальных домашних практических заданий (ИПК-4.2)

Темы индивидуальных практических заданий:

- 1. Задача о распределении ресурсов.
- 2. Задача складирования.
- 3. Задача о замене оборудования.
- 4. Решение задачи о назначениях венгерским методом.
- 5. Решение задачи целочисленного программирования методом ветвей и границ.
- 6. Построение неориентированного покрывающего дерева на графе.
- 7. Алгоритм Форда построения дерева кратчайших путей из заданной вершины.
- 8. Задача поиска на графе всех кратчайших пути алгоритмом Флойда.
- 9. Решение задачи сетевого планирования методом критического пути. .
- 10. Задача поиска максимального потока.
- 11. Задача поиска потока минимальной стоимости.
- 12. Задача поиска максимального динамического потока.
- 13. Задача поиска на графе паросочетания максимальной мощности.

Примеры домашних практических заданий (ИПК-4.2):

1. Задача о назначениях (задача выбора).

Для заданной матрицы C найти выбор, сумма элементов которого максимальна.

æ
12
 10 50 72 60 $^{\circ}$ $^{\circ}$

Посчитать сумму элементов выбора.

2. Задача складирования.

Планируется использование склада ёмкости C=10 для хранения некоторого продукта в течение 6 ед. времени. В начале каждого временного интервала принимается решение об объеме закупок и продаж (в произвольной последовательности). Необходимо так спланировать закупки-продажи при условии пустого склада в начале, чтобы суммарная прибыль была максимальна.

Цены закупок (α_k) и продаж (β_k) даны в таблице:

k	1	2	3	4	5	6
α_{k}	27	26	18	13	14	22
β_k	28	10	9	11	29	32

1. Указание: использовать Венгерский метод.

OTBET: $(c_{14}, c_{22}, c_{31}, c_{43}, c_{55})$ F*=312

2. Указание: использовать метод динамического программирования (схему обратного хода).

Ответ: Суммарная прибыль $F^* = 350$.

Оптимальный план закупок-продаж: Q (заполнить склад и продать всё) Р

Р О (не покупать и не продавать) Р

Р О (не покупать и не продавать) Р

Þ R (заполнить склад и не продавать) Þ

Р О¹ (продать всё и заполнить склад) Р

Р Р(продать всё и не покупать).

Критерии оценивания: домашние задания зачтены, если получены верные ответы и обучающийся ответил правильно на все вопросы по ходу их решения.

Коллоквиум по определениям и понятиям (ИУК-1.1)

Список вопросов по определениям и понятиям:

- 1. Граф.
- 2. Неориентированный граф.
- 3. Ребро.
- 4. Петля.
- 5. Инцидентность вершины и дуги.
- 6. Инцидентность дуг.
- 7. Смежность вершин.
- 8. Цепь.
- 9. Путь.
- 10. Цикл.
- 11. Контур.
- 12. Связность графа.
- 13. Компонента связности.
- 14. Дерево на графе.
- 15. Покрывающее дерево графа.

- 16. Разрез.
- 17. Матрица инциденций графа.
- 18. Матрица смежности графа.

Примеры вопросов:

- 1. Покрывающее дерево графа.
- 2. Матрица инциденций графа.

Ответы:

- 1. Покрывающим деревом графа G называется любое дерево, порождающее подграф, множество вершин которого совпадает с множеством вершин графа G.
- 2. Матрицей инциденций графа G называется матрица, состоящая из m строк, каждая из которых соответствует определенной вершине, и n столбцов, каждый из которых соответствует определенной дуге. Элемент матрицы (i,j) равен: +1, если i-я вершина является начальной для j-й дуги; -1, если i-я вершина является конечной для j-й дуги; 0, если i-я вершина и j-я дуга не инцидентны.

Критерии оценивания: коллоквиум зачтен, если обучающийся ответил правильно как минимум на половину вопросов.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация проводится в виде экзамена. Экзамен проводится по билетам в письменно/устной форме, т.е. студент письменно готовится, а затем устно отвечает. Продолжительность экзамена 1,5 часа.

Экзаменационный билет состоит из двух частей.

Первая часть содержит два вопроса из разных разделов дисциплины, проверяющих ИУК-1.1. ИУК-1.2, ИУК-1.3. Ответы на вопросы даются в развернутой форме.

Вторая часть содержит один вопрос, проверяющий УК-1, оформленный в виде практической задачи. Ответ предполагает решение задачи и краткую интерпретацию полученных результатов. Если студент не пропустил ни одного занятия, выполнил все индивидуальные домашние практические задания и по каждому ответил на вопросы преподавателя, тем самым доказав самостоятельное выполнение, он освобождается от второй части экзаменационного билета – практического задания.

Перечень теоретических вопросов:

- 1. Общее описание модели ДП.
- 2. Принцип оптимальности. Уравнение Беллмана.
- 3. Вычислительная схема "обратного хода".
- 4. Задача распределения ресурсов.
- 5. Постановка задачи оптимального распределения ресурсов.
- 6. Динамическая модель задачи оптимального распределения ресурсов.
- 7. Динамическая модель задачи складирования, когда покупка предшествует продаже.
- 8. Динамическая модель задачи складирования, когда продажа предшествует покупке.
- 9. Динамическая модель задачи о замене оборудования производящего продукцию.
- 10. Динамическая модель задачи о замене оборудования не производящего продукцию.
- 11. Задача о назначениях. Венгерский метод.
- 12. Метод ветвей и границ.
- 13. Алгоритм построения неориентированных покрывающих деревьев.
- 14. Алгоритм Дейкстры поиска на графе кратчайшего пути.

- 15. Отличие алгоритма Форда от алгоритма Дейкстры.
- 16. Обнаружение отрицательного контура.
- 17. Алгоритм Флойда определения всех кратчайших путей на графе.
- 18. Задача об узких местах.
- 19. Задача с усилениями.
- 20. Сетевые графики. Метод критического пути.
- 21. Алгоритм поиска увеличивающей цепи на графе.
- 22. Алгоритм поиска максимального потока на графе.
- 23. Алгоритм поиска потока минимальной стоимости на графе.
- 24. Алгоритм поиска максимального динамического потока на графе.
- 25. Алгоритм построения чередующегося дерева.
- 26. Алгоритм выбора паросочетания максимального мощности.
- 27. Задача почтальона.
- 28. Задача коммивояжера.

Примеры задач:

1. Задача об инвестициях.

Необходимо спланировать распределение средств, имеющихся в количестве R, между N предприятиями, чтобы суммарный доход был максимальным.

R=30, N=3, средства выделяются кратно 10, функция дохода приведена в таблице:

$u_k \setminus k$	1	2	3
10	5	2	3
20	7	8	6
30	8	15	9

2. Задача складирования.

Планируется использование склада ёмкости C для хранения некоторого продукта в течение k ед. времени. В начале каждого временного интервала принимается решение об объеме закупок и продаж (в произвольной последовательности). Необходимо так спланировать закупки-продажи, чтобы суммарная прибыль была максимальна.

C=10, k=6, цены закупок (α_k) и продаж (β_k) даны в таблице:

k	1	2	3	4	5	6
α_k	27	26	18	13	14	22
β_k	28	10	9	11	29	32

3. Задача о замене оборудования.

Планируется использование автомобиля в течение 8 лет. Цена нового автомобиля P=15000. Эксплуатационные расходы за год на содержание нового автомобиля r(0)=150. Эксплуатационные расходы за год на содержание автомобиля возраста t лет r(t) и ликвидационная стоимость автомобиля возраста t лет $\varphi(t)$ даны в таблице:

t	1	2	3	4	5	6	7	8
r(t)	364	1007	2078	3578	5507	7864	10650	
j (t)	10000	6666	4444	2962	1975	1316	877	585

В начале каждого года принимается решение о замене либо о сохранении автомобиля. Предполагается, что первый автомобиль достаётся бесплатно, а в конце 8-го года имеющийся к тому моменту автомобиль продаётся, и вырученные средства вычитаются из затрат. Нужно так спланировать замены автомобиля, чтобы суммарные затраты за 8 лет были минимальны.

4. Решение задачи о назначениях (задачи выбора) венгерским методом.

Для заданной матрицы C определить выбор, сумма элементов которого максимальна. Посчитать сумму элементов выбора.

5. Решение задачи дискретного программирования методом ветвей и границ.

Необходимо решить методом ветвей и границ следующую задачу:

6. Построение покрывающего дерева минимального веса на неориентированном графе.

Граф задан матрицей смежности:

	а	b	c	d	e	f	g	h	k	l	m	n
а		5	1	2	4							
b			1		7	6						
c					1							
d					1							
e						4	3					
f							6		10			
g								9			12	13
h											15	
k										7	3	
1												
m												8

Критерии оценивания:

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется в случае, если студент исчерпывающе отвечает на все вопросы.

Оценка «хорошо» выставляется в случае, если студент в процессе ответа на вопросы допускает непринципиальные ошибки или неточности.

Оценка «удовлетворительно» выставляется в случае, если студент в процессе ответа на вопросы делает грубые ошибки, но показывает понимание сути вопросов и правильно использует научную терминологию.

Оценка «неудовлетворительно» выставляется, если студент не понимает сути вопросов, не знает целей алгоритмов, не владеет терминологией.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Задание 1 (ИПК-4.1)

Задача об инвестициях (распределения ресурсов).

Необходимо спланировать распределение средств, имеющихся в количестве R, между N предприятиями, чтобы суммарный доход был максимальным.

R=30, N=3, средства выделяются кратно 10. Функция дохода приведена в таблице:

$u_k \setminus k$	1	2	3
10	5	2	3
20	7	8	6
30	8	15	9

Выполнена условная оптимизация третьего шага.

<i>y</i> k-1	u_k	y_k	f3(u3)	$Z_4^*(y_3)$	$Z_3(y_2,u_3)$	$f_2(u_2)$	$Z_3^*(y_2)$	$Z_2(y_I,u_2)$	$f_I(u_I)$	$Z_2^*(y_I)$	$Z_I(y_0,u_I)$
0	0	0	0	0	<u>0</u>						
10	0	10	0	0	0						
	10	0	3	0	<u>3</u>						
20	0	20	0	0	0						
	10	10	3	0	3						
	20	0	6	0	<u>6</u>						
30	0	30	0	0	0						
	10	20	3	0	3						
	20	10	6	0	6						
	30	0	9	0	9						

Задание: Продолжить заполнение таблицы, выполнить условную оптимизацию второго шага.

Ответ:

yk-1	u_k	\mathcal{Y}_k	f3(u3)	$Z_4^*(y_3)$	$Z_3(y_2,u_3)$	$f_2(u_2)$	$Z_3^*(y_2)$	$Z_2(y_1,u_2)$	$f_I(u_I)$	$Z_2^*(y_I)$	$Z_I(y_0,u_I)$
0	0	0	0	0	<u>0</u>	0	0	<u>0</u>			
10	0	10	0	0	0	0	3	<u>3</u>			
	10	0	3	0	<u>3</u>	2	0	2			
20	0	20	0	0	0	0	6	6			
	10	10	3	0	3	2	3	5			
	20	0	6	0	<u>6</u>	8	0	<u>8</u>			
30	0	30	0	0	0	0	9	9			
	10	20	3	0	3	2	6	8			
	20	10	6	0	6	8	3	11			
	30	0	9	0	9	15	0	<u>15</u>			

<u>Задание 2 (ИПК-4.3)</u>

Задача складирования.

Планируется использование склада ёмкости C=10 для хранения некоторого продукта в течение 6 ед. времени. В начале каждого временного интервала принимается решение об объеме закупок и продаж (в произвольной последовательности). Необходимо так спланировать закупки-продажи, чтобы суммарная прибыль была максимальна. Цены закупок (α_k) и продаж (β_k) даны в таблице:

	k	1	2	3	4	5	6
	α_k	27	26	18	13	14	22
ſ	β_k	28	10	9	11	29	32

Условная оптимизация выполнена:

k	y_{k-1}	O(0,0)	$P(0,y_{k-1})$	$Q(C-y_{k-1},C)$ 100 *	$R(C-y_{k-1},0)$	$Q'(C,y_{k-1})$
6	0			100*		
	C		<i>320</i> *	320		
5	0	100	_	250*	180	_
	C	320	390	_	_	470*
4	0	250	_	230	340*	_
	C	470*	360	_	_	450
3	0	340*	_	250	290	_
	C	470*	430	_	_	380
2	0	340*	_	180	210	_
	C	470 [*]	440	_	_	310
1	0	340	-	350*	200	_
	C	470	<i>620</i> *	_	_	480

Задание: Выполнить этап безусловной оптимизации. Определить максимальное значение прибыли за весь период и оптимальные объемы закупок и продаж в каждом временном интервале.

Ответ:

$$\overline{y_0} = 0$$
: $F^* = 350$, $Q \bowtie O \bowtie O \bowtie R \bowtie Q^1 \bowtie P$. $y_0 = C$: $F^* = 620$, $P \bowtie O \bowtie O \bowtie R \bowtie Q^1 \bowtie P$.

<u>Задание</u> 3 (ИУК-1.1)

Задача о замене оборудования.

Планируется использование автомобиля в течение 8 лет. Цена нового автомобиля P=15000. Эксплуатационные расходы за год на содержание нового автомобиля r(0)=150. Эксплуатационные расходы за год на содержание автомобиля возраста t лет r(t) и ликвидационная стоимость автомобиля возраста t лет $\varphi(t)$ даны в таблице:

t	1	2	3	4	5	6	7	8
r(t)	364	1007	2078	3578	5507	7864	10650	
j(t)	10000	6666	4444	2962	1975	1316	877	585

В начале каждого года принимается решение о замене либо о сохранении автомобиля. Предполагается, что первый автомобиль достаётся бесплатно, а в конце 8-го года имеющийся к тому моменту автомобиль продаётся, и вырученные средства вычитаются из затрат. Нужно так спланировать замены автомобиля, чтобы суммарные затраты за 8 лет были минимальны.

Задание: Начать заполнение таблицы – выполнить условную оптимизацию последнего 8-го шага.

Ответ:

v	CIII.								
	k	u_k	1	2	3	4	5	6	7
	8	С	-6302*	-3437*	-884*	1603*	4191	6987	10065
		3	-4850	-1516	706	2188	3175*	3834*	4273*
	7	С							
		3							

<u>Задание</u> 4 (ПК-4)

Задача о назначениях (задача выбора).

Для заданной матрицы C определить выбор, сумма элементов которого максимальна. Посчитать сумму элементов выбора.

Подготовительный этап выполнен – получена матрица C^0 :

Задание: Выполнить 1-ю итерацию алгоритма – получить матрицу C^l .

Ответ:

<u>Задание 5</u> (УК-1)

Решение задачи дискретного программирования методом ветвей и границ.

Необходимо решить методом ветвей и границ следующую задачу:

Выполняется 3-я итерация алгоритма, из списка задач выбрана и решена очередная задача:

3£
$$x_1$$
 £ 4
0£ x_2 £ 2 её решение: $X^3 = (3, 1.5)^T$, $L(X^3) = 6$.
 $Z = 0$

Задание: Продолжить выполнение итерации.

Ответ:

Значение эталона: Z = 0

В список задач заносятся 2 новые задачи в следующих границах:

$$3£ x_1 £ 4$$
 $3£ x_1 £ 4$
 $0£ x_2 £ 1$
 $2£ x_2 £ 2$

<u>Задание 6</u> (ИУК-1.2)

Покрывающее дерево на неориентированном графе

Построить покрывающее дерево максимального веса на графе, заданном матрицей смежности:

	а	b	C	d	e	f	g	h	k	l	m	n
а		5	1	2	4							
b			1		7	6						
c					1							
d					1							
e						4	3					
f							6		10			
g								9			12	13
h											15	
k										7	3	
l												
m												8

Задание: Начать выполнение алгоритма – заполнить первые 5 строк таблицы:

Ответ:

Дуга	Вес	Цвет	Букет 1	Букет 2	Букет 3
(h,m)	15	г	h, m		
(g,n)	13	г		g, n	
(g,m)	12	г	g, n		
(f,k)	10	г		f, k	
(g,h)		О			

Теоретические вопросы:

1. Задача о замене оборудования (ИУК-1.3)

Ответ должен содержать формальную постановку задачи, варианты задаваемых параметров и метод решения.

2. Задача о назначениях (ИУК-1.2)

Ответ должен содержать формальную постановку задачи, методы решения, интерпретацию возможных ответов.

3. Задача поиска на графе кратчайших путей (ИУК-1.1)

Ответ должен содержать определения возможных видов кратчайших путей, перечисление алгоритмов решения для каждого случая, их сравнение.

4. Паросочетания и покрытия (ИПК-4.2)

Ответ должен содержать определения паросочетания максимальной мощности и покрытия минимальной мощности, эквивалентность задач их построения, интерпретацию этих понятий.

Информация о разработчиках

Катаева София Семеновна, канд. тех. наук, доцент, кафедра прикладной математики института прикладной математики и компьютерных наук, доцент