Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Прикладная спектроскопия комбинационного рассеяния

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки / специализация: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 – Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

- Знакомство с оборудованием необходимым для регистрации спектров комбинационного рассеяния.
 - Знакомство с техникой проведения исследований с помощью КР-спектрометра.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 2, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по дисциплинам «Общая физика», «Техника спектроскопии».

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

– лабораторные работы: 32 ч.

в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Лабораторная работа №1 «Качественный анализ методом спектроскопии комбинационного рассеяния».

Лабораторная работа №2 «Количественный анализ методом спектроскопии комбинационного рассеяния».

Лабораторная работа №3 «Определение температуры жидкого CCl₄ с помощью спектроскопии KP».

Лабораторная работа №4 «Измерение поляризационных характеристик рассеянного света по колебательным спектрам КР ССІ₄».

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости и оценки практических заданий. Фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Для получения оценки «зачтено» необходимо выполнить все лабораторные работы и сдать отчеты по ним. Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

Вопросы при защите отчетов по выполненным работам позволяют проверить сформированность компетенций ПК-1 в соответствии с индикаторами ИПК 1.1. и ИПК 1.2.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=24584
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) темы лабораторных работ:

Лабораторная работа №1 «Качественный анализ методом спектроскопии комбинационного рассеяния».

Задания:

- 1. Ознакомиться с экспериментальной установкой и провести ее юстировку.
- 2. Рассчитать требуемый спектральный диапазон для регистрации частотных сдвигов от -1000 см^{-1} до 1000 см^{-1} .
 - 3. Зарегистрировать спектры КР полученных от преподавателя образцов.
- 4. Из полученных спектров КР определить в какой кювете находился СС14. Для этого необходимо воспользоваться известным фактом, что СС14 имеет в своем спектре КР четыре характерных колебательных полосы с частотными сдвигами: 218 cm^{-1} , 314 cm^{-1} , 459 cm^{-1} , 762 cm^{-1} .

Лабораторная работа №2 «Количественный анализ методом спектроскопии комбинационного рассеяния».

Задания:

- 1. Ознакомиться с экспериментальной установкой и провести ее юстировку.
- 2. Рассчитать требуемый спектральный диапазон для регистрации частотных сдвигов от -100 cm^{-1} до 3500 cm^{-1} .

- 3. Зарегистрировать и сохранить в памяти ПК спектры КР чистого ацетона, этилацетата и 1,4-диоксана.
 - 4. Зарегистрировать спектр КР образца смеси данных компонентов.
 - 5. Используя полученный спектр определить концентрации компонентов в смеси.

Лабораторная работа №3 «Определение температуры жидкого CCl_4 с помощью спектроскопии KP».

Задания:

- 1. Зарегистрировать спектр CCl_4 в диапазоне частотных сдвигов от -1000 см⁻¹ до 1000 см⁻¹.
- 2. Определить температуру CCl₄ используя 3 отношения интенсивностей стоксовых и антистоксовых полос.
- 3. Объяснить выбор используемых отношений интенсивностей полос.
- 4. Объяснить природу возникновения погрешностей определения температуры.

Лабораторная работа №4 «Измерение поляризационных характеристик рассеянного света по колебательным спектрам КР ССІ₄».

Задания:

- 1. Зарегистрировать спектр CCl_4 в диапазоне частотных сдвигов от -1000 см⁻¹ до 1000 см⁻¹.
- 2. Поместить в экспериментальную установку перед входной щелью монохроматора поляризатор.
- 5. Зарегистрировать спектр CCl₄ при двух положениях поляризатора: 1 поляризатор пропускает свет поляризованный параллельно плоскости поляризации возбуждающего лазерного излучения, 2 поляризатор пропускает свет поляризованный перпендикулярно плоскости поляризации возбуждающего лазерного излучения.
- 6. Определить степени деполяризации отдельных колебательных полос CCl₄.
- 7. Сделать выводы о природе наблюдаемых полос КР.
- 8. Объяснить почему измеренные степени деполяризации отличаются от теоретических значений.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1.Шмидт В. Оптическая спектроскопия для химиков и биологов. М.: Техносфера, 2007. 376 с.
- 2. Вебер А. Спектроскопия комбинационного рассеяния света в газах и жидкостях. М.: Мир, 1982.373 с.
 - б) дополнительная литература:
 - 1. Rouessac F., Rouessac A. Chemical analysis. Modern instrumentation methods and techniques. Wiley. 2007. 599 p.
 - 2. McCreery R.L. Raman spectroscopy for chemical analysis. Wiley. 2000. 437 pp.
 - 3. Ferraro J.R., Nakamoto K., Brown C.W. Introductory Raman spectroscopy. Elsevier. 2003. 435 pp.
 - 4. Lewis I.R., Edwards H.G.M. Handbook of Raman spectroscopy. From research laboratory

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Петров Дмитрий Витальевич, к.техн.н., доцент, доцент физического факультета ТГУ.