Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Экологическая биохимия

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.

ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем
- ИОПК-2.2 Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

2. Задачи освоения дисциплины

- Изучить вопросы, посвященные экологической роли химических веществ, являющихся посредниками в экологических взаимоотношениях между организмами.
- Изучить биохимические механизмы биотрансформации ксенобиотиков в экосистемах.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Физиология растений, микроорганизмов, биотехнология и биоинформатика».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Восьмой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: общей биологии, экологии, микробиологии, биохимии и молекулярной биологии.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых: -лекции: 20 ч.

-семинар: 14 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Информационный процессинг и стратегии выживания.

- 1. Предмет и задачи экологической биохимии. Молекулярно-биохимические механизмы взаимодействий в природных экосистемах
- 2. Концепция стресса: растение и его местообитание. Понятие стимула, сигнала и стресса. Биотические и абиотические стрессоры. Передача сигнала и формирование физиологического ответа. Первичные и вторичные мессенджеры.
- 3. Трансдукция сигнала и формирование ответа на стресс. Активация вторичных мессенджеров в сигнальном каскаде.
- 4. Трансдукция сигнала через дерепрессию экспрессии генов. Белки репрессоры. Посадка РНК-полимеразы и транскрипция гена. Убиквитин-лигазный комплекс.
- 5. Трансмембранные и не ассоциированные с мембранами рецепторы. Фитогормоны и их рецепторы: механизм передачи сигнала.
- 6. Система вторичных и первичных мессенджеров. Активные формы кислорода и оксид азота МО. Сигнальные молекулы пептидов. Полиамины. Система фосфоинозитидов. С-белки. Ионные каналы. Кальций. Протеин киназная система. miRNA

Тема 2. Биохимия абиотического стресса

- 1. Кислород. Окислительный стресс и активные формы кислорода. Рецепторы кислорода и активация вторичных мессенджеров.
 - 2. Свет. Свет как стрессор и триггер. Рецепторы и механизм передачи сигнала.
 - 3. Вода. Водный дефицит, осмолиты. Адаптация к водному стрессу.
 - 4. Минеральный дефицит. Механизмы адаптации к минеральному дефициту.
 - 5. Насекомоядные растения.
- 6. Тяжелые металлы. Редокс-активные металлы. Механизмы аккумуляции и детоксикации тяжелых металлов.
- 7. Ксенобиотики. Классы ксенобиотиков, основные источники загрязнения. Биодеградация и биотрансформация ксенобиотиков. Биоремедиация.

Тема 3. Биохимические основы межвидовых взаимодействий

- 1. Сообщества и биохимические принципы функционирования экосистем. Буковый лес модельный объект экологических исследований. Общая микоризная сеть. Биохимия симбиотических взаимодействий в экосистеме.
 - 2. Биопленки. Бактериальные маты и формирование первых экосистем.

Взаимодействие внутри биопленки. Эмерджентные свойства биопленок. Кворум сенсинг.

- 3. Взаимодействия в ризосфере. Бактериальное сообщество в филлосфере и ризосфере. Бактериальное сообщество в ризосфере: PGPR. Индуцированная системная резистентность.
- 4. Биохимия взаимодействий: растение животное. Классы биохимических агентов участвующих во взаимодействии между животными и растениями. Мутуализм между растениями и животными. Опыление растений животными. Аттрактанты как мимические феромоны. Тройной мутуализм: муравьи растение гриб
- 5. Аллелопатия и другие формы межвидовых взаимодействий. Аллелопатические агенты. Взаимодействия: гриб бактерия.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ или тестов по лекционному материалу, выполнения заданий и докладов по темам семинарских занятий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в восьмом семестре проводится в устной форме. Итоговая оценка по дисциплине состоит из: (1) оценки за знание основных понятий и теоретических положений (текущий контроль), (2) оценки за индивидуальное задание (доклад).

Примерный перечень теоретических вопросов.

ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем

- 1. Механизм «facilitation» при недостатке азота в экосистеме, примеры. Основной источник азота в экосистемах.
- 2. Стратегии к поглощению света в экосистеме букового леса. Механизмы адаптации растений к затенению.
- 3. Конкуренция за питательные вещества в экосистеме. Уклонение от конкуренции.
- 4. Антропогенная и биологическая фиксация азота. Симбиотические группы бактерий. Почему эффективность азотфиксации симбиотических бактерий значительно выше свободноживущих?
- 5. Последовательные этапы образования симбиоза между растениями сем. Fabaceae и бактериями рода Rhizobium.
- 6. Механизм фиксации азота симбиосомой, защита нитрогеназы от действия кислорода (по схеме). Транспорт органического азота по растению. Симбиотическое углеродное питание бактероида.
- 7. Микориза: преимущество симбиоза для растений и грибов. Типы микориз, основные различия.
- 8. Бактериальное сообщество в ризосфере. Биохимические основы взаимодействия в ризосфере и филлосфере. Бактерии, содействующие росту растений. Индуцированная системная резистентность.
- 9. Подавление растительных патогенов ризобактериями. Биохимические механизмы контроля PGRP.
- 10. Роль цианобактерий и актинобактерий в ризосфере. Патогенные почвенные бактерии. Ассоциированные с растениями бактерии как оппортунистические патогены человека.
- 11. Грибы в ризосфере. Взаимодействия: растение гриб. Гриб бактерии. Микоризные бактерии-хелперы.
- 12. Аллелопатия. Взаимодействия растений через общую грибную сеть. Паразитические растения.
- 13. Фосфор в природе. Фосфорное питание в ЕСМ и АМ.
- 14. Азотное питание и углеводный обмен в ЕСМ и АМ. Функционирование GS-COCAT системы.

ИОПК-2.2 Использует физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания

- 1. Принципы функционирования экосистем. Первичная продукция (NPP). Каким образом изменение состава ФАР, температуры, углекислого газа и минерального состава почвы будет влиять на NPP?
- 2. Фосфор в природе. Фосфорное питание в ЕСМ и АМ.
- 3. Азотное питание и углеводный обмен в ЕСМ и АМ. Функционирование GS-COCAT системы.

4. Применение физико-химических методов анализа для установления вторичных метаболитов растений, грибов, микроорганизмов, беспозвоночных

ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

- 1. Принципы функционирования экосистем. Первичная продукция (NPP). Каким образом изменение состава ФАР, температуры, углекислого газа и минерального состава почвы будет влиять на NPP?
- 2. Фосфор в природе. Фосфорное питание в ЕСМ и АМ.
- 3. Азотное питание и углеводный обмен в ЕСМ и АМ. Функционирование GS-COCAT системы.
- 4. Применение физико-химических методов анализа для установления вторичных метаболитов растений, грибов, микроорганизмов, беспозвоночных

Примерный перечень тем докладов:

Формируемые компетенции: ИОПК-2.1, ИОПК-2.2, ИПК-1.1

- 1. Ядовитые растения сем. Solonaceae. Представители и их токсины. Механизм токсического действия.
- 2. Ядовитые растения сем. Umbelliferae (Apiaceae). Представители и их токсины. Механизм токсического действия.
- 3. Получение натурального каучука, альтернативные источники. Гуттаперча, чикл.
- 4. Воск: химическая природа, образование в растении, физиологическая роль, промышленное применение и свойства.
- 5. Кураре. Механизм токсического действия, состав, растительные источники, противоядия.
- 6. Алкалоиды из видов Capsicum.
- 7. Вторичные метаболиты грибов
- 8. Вторичные метаболиты микроорганизмов
- 9. Вторичные метаболиты беспозвоночных
- 10. Прикладное значение аллелопатии.
- 11. Эколого-биохимические аспекты взаимодействий растений и животных.
- 12. Биохимическая коэволюция растений и животных.
- 13. Хеморегуляторы пищевого поведения фитофагов.
- 14. Пищевые детергенты и антифиданты, аттрактанты и стимуляторы.
- 15. Экологические хеморегуляторы онтогенеза и плодовитости фитофагов.
- 16. Эколого-биохимические взаимодействия с участием грибов и водорослей.
- 17. Вещества, участвующие в привлечении опылителей.
- 18. Эколого-биохимические взаимодействия между животными.
- 19. Примеры физико-химических методов анализа для установления вторичных метаболитов растений, грибов, микроорганизмов, беспозвоночных

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-метолическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «iDO» https://lms.tsu.ru/course/view.php?id=17415
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Основы биохимии : учебное пособие : [для студентов, обучающихся по направлениям подготовки бакалавров 240700 "Биотехнология", 260100 "Продукты питания из растительного сырья", 260800 "Технология продукции и организация общественного питания"] /Т. Л. Ауэрман, Т. Г. Генералова, Г. М. М.: ИНФРА-М, 2013 398с.
- Конопатов Ю. В., Васильева С. В. Основы экологической биохимии: Учебное пособие. СПб.: Издательство «Лань», 2018. 136 с.
- Егоров В. В. Экологическая химия: Учебное пособие. СПб.: Издательство «Лань», 2017. 184 с.
 - б) дополнительная литература:
- Принципы и методы биохимии и молекулярной биологии /[Э. Эйткен, А. Р. Бейдоун, Дж. Файфф и др.]; ред.: К. Уилсон и Дж. Уокер; пер. с англ. Т. П. Мосоловой и Е. Ю. Бозелек-Решетняк; под ред. А. В. Левашова, В. М. Тишкова М.: БИНОМ. Лаборатория знаний, 2015 848с.
- Основы биохимии Ленинджера Т. 1 : в 3 т. /Д. Нельсон, М. Кокс ; пер. с англ. Т. П. Мосоловой под ред. А. А. Богданова, С. Н.- МОСКВА : БИНОМ. ЛАБ. ЗНАНИЙ , 2011 694С.
- Биохимия: учебное пособие /А. Д. Димитриев, Е. Д. Амбросьева Москва : Дашков и Ко , 2012 165с.
- Введение в проблемы биохимической экологии: Биотехнология, сельское хозяйство, охрана среды / М. М. Телитченко, С. А. Остроумов.— М.: Наука, 1990.— 288 с.
- Krauss Gerd-Joachimor, Nies Dietrich H. Ecological Biochemistry: Environmental and Interspecies Interactions. Wiley-Blackwell, 2015. 440 p.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы;
 - открытые онлайн-курсы;
 - сайт биохимия для студента: https://biokhimija.rw/
 - сайт, посвящённый молекулярным основам современной биологии и практическим применениям научных достижений в медицине и биотехнологии: https://biomolecula.rn/
 - периодическое издание PLoS Biology http://biology.plosjournals.org Электронная версия журнала.
 - прикладная биохимия и микробиология : журнал /Poc. AH, Ин-т биохимии им. A. H. Баха. Электронный ресурс. http://elibrary.ru/contents.asp?titleid=7955.
 - библиографическая и реферативная база данных «Scopus» https://www.scopus.com.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа, оснащенной доской и мультимедийным оборудованием для демонстрации презентаций, а также аудиосистемой для демонстрации обучающих видеороликов. Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Бойко Екатерина Владимировна, кандидат биологических наук, кафедра физиологии растений, биотехнологии и биоинформатики Биологического института ТГУ, старший преподаватель.