Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физико-технический факультет

УТВЕРЖДЕНО: Декан Ю.Н. Рыжих

Оценочные материалы по дисциплине

Гидравлические приводы мехатронных и робототехнических систем

по направлению подготовки

15.03.06 Мехатроника и робототехника

Направленность (профиль) подготовки: **Промышленная и специальная робототехника**

Форма обучения **Очная**

Квалификация **Инженер, инженер-разработчик**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОПОП Е.И. Борзенко

Председатель УМК В.А. Скрипняк

Томск - 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способность составлять математические модели мехатронных и робототехнических систем, их подсистем и отдельных элементов и модулей, включая информационные, электромеханические, гидравлические, электрогидравлические, электронные устройства и средства вычислительной техники.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РОПК 1.1 Знает основные законы, описывающие функционирование проектируемых объектов.

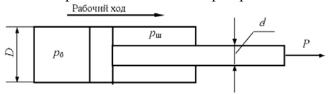
РОПК 1.2 Умеет использовать стандартные пакеты прикладных программ для выполнения математического моделирования.

2. Оценочные материалы текущего контроля и критерии оценивания

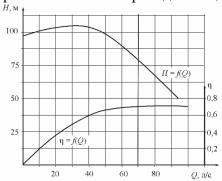
Элементы текущего контроля:

- отчеты о выполнении практических заданий;

В течение семестра студенты выполняют практические задания по предварительному расчету геометрических характеристик насосов, гидравлических характеристик насосных установок и гидравлических приводов, составляют ответы на теоретические вопросы в области физических основ функционирования гидравлических систем.

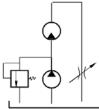

Примеры теоретических вопросов (РОПК-1.1):

- 1. Какие явления могут возникать вследствие увеличения количества растворённого газа в рабочей жидкости гидравлических машин?
- 2. Почему испаряемость рабочих жидкостей, как правило, характеризуют давлением насыщенных паров?
- 3. В каких условиях движения необходимо учитывать эффект поверхностного натяжения жидкости?
- 4. Как влияют давление и температура на количество растворенного газа в жидкости?
- 5. Какие факторы могут привести к пенообразованию рабочей жидкости гидравлической машины?
 - 6. Что такое кавитация? При каких условиях она возникает?
 - 7. Какие функции выполняет рабочая жидкость в гидросистеме?
- 8. Опишите стадии гидравлического удара. Какие меры применяют для борьбы с гидравлическим ударом?


Примеры задач (РОПК-1.2):

1. Центробежный насос перекачивает воду из колодца с уровнем воды на 2,5 м ниже центра насоса в бак с уровнем воды на 10 м выше центра насоса. Определить напор, создаваемый насосом, если диаметры и длины всасывающей и нагнетательной труб соответственно равны $d_1=75$ мм, $d_2=50$ мм, $l_1=10$ м, $l_2=20$ м, коэффициент сопротивления сетки на всасывающей трубе $\xi_1=4$, коэффициент сопротивления вентиля на нагнетательной трубе $\xi_2=5$, коэффициент гидравлического трения труб $\lambda_1=\lambda_2=0,025$, подача насоса $Q_{\rm H}=2,8$ л/с, избыточное давление в баке $p_{\rm H}=1$ 0 - 1 0 5 Па.

- 2. Рассчитать основные размеры и выполнить конструктивную схему шестеренного насоса с рабочим объемом $q=6~{\rm cm}^3$, частотой вращения $n=25~{\rm c}^{-1}$ при давлении $p=10~{\rm M\Pi a}$.
- 3. Диаметр гидравлического цилиндра D=50 мм, диаметр штока d=25 мм. При рабочем ходе штока давление в бесштоковой полости цилиндра $p_6=14$ МПа, а в штоковой полости $p_{\rm III}=0.5$ МПа. Уплотнение штока и поршня выполнено шевронными резиновыми манжетами (ширина уплотнения штока $b_{\rm III}=15$ мм, ширина уплотнения поршня $b_{\rm II}=30$ мм). Схема гидравлического цилиндра представлена на рисунке.



- 4. При температуре $T_1 = +20$ °C масло M-10-B2 занимает объем $V_1 = 50$ л. Определить объем, который займет масло при температуре $T_2 = -40$ °C и $T_3 = +80$ °C, если температурный коэффициент объемного расширения $\beta_T = 8.74 \cdot 10^{-4}$ °C.
- 5. Центробежный насос с характеристикой, показанной на рисунке, перекачивает воду по трубопроводу диаметром d=150 мм и приведенной длиной L=500 м.

Определить мощность на валу насоса, если геометрическая высота подъема жидкости $H_{\Gamma}=25\,$ м, а свободный напор на выходе $h_{\rm cB}=20\,$ м. Коэффициент гидравлического трения трубопровода $\lambda=0.025.$

6. Определить необходимую подачу насоса и коэффициент полезного действия (КПД) гидравлического привода, схема которого изображена на рисунке.

КПД насоса $\eta_{\rm H}$ =0.74, рабочий объем гидромотора $q_{\rm M}$ = $63\cdot 10^{-6}$ м 3 , частота вращения вала $n_{\rm M}$ = 12 с $^{-1}$, крутящий момент на валу гидромотора $M_{\rm H}$ = 50 Н·м. КПД гидромотора: механический $\eta_{\rm M.M}$ =0.82, объемный $\eta_{\rm M.O}$ = 0.91. Потери (перепад) давления в распределителе $\Delta p_{\rm p}$ = 0.15 МПа. Длина гидролиний (общая) l = 7 м, диаметр труб d = 0.02 м. Коэффициент местного сопротивления поворота трубы (колена) ζ = 0.2, количество поворотов m = 6. Коэффициент трения λ = 0.035. Плотность рабочей жидкости $\rho_{\rm M}$ = 780 кг/м 3 .

Критерии оценивания:

Решениям практических задач и ответам на теоретические вопросы присваиваются оценки «зачтено» и «не зачтено».

Оценка «зачтено» выставляется, если даны правильные ответы на все теоретические вопросы, задача решена верно, без значительных ошибок в построении решения.

Оценка «не зачтено» выставляется, если не предоставлены или предоставлены неверно ответы на теоретические вопросы, практическая задача не решена.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет проводится в письменной форме по билетам. Допуск к зачету осуществляется на основании сдачи всех практических заданий. Билет содержит два теоретических вопроса на знание материала лекций.

Примеры теоретических вопросов (РОПК-1.1):

- 1. Какие системы включает структура гидропривода?
- 2. Какие нагрузки могут испытывать трубопроводы?
- 3. В процессе работы объемного насоса при нагнетании жидкости давление последней повышается до значения, достаточного для преодоления суммарного сопротивления гидросистемы. Чем обусловлено это суммарное сопротивление?
- 4. Что такое гидравлические исполнительные механизмы? Классифицируйте их по виду движения.
- 5. Опишите принцип функционирования гидрораспределителя с дискретным электромагнитным управлением.
- 6. Назовите гидроаппараты управления давлением. Как они различаются по конструктивному исполнению и функциональному назначению?
- 7. Назовите принципиальные отличия между напорными и редукционными клапанами.
 - 8.. Какое принципиальное различие между дросселями и регуляторами расхода?

Результаты зачета определяются оценками «зачтено», «не зачтено».

Оценки «зачтено» заслуживает обучающийся, показывающий всестороннее, систематическое и глубокое знание учебного материала.

Оценка «незачтено» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала, допустившему принципиальные ошибки в формулировке ответов на вопросы.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Теоретические вопросы (РОПК-1.1):

- 1. Какие явления могут возникать вследствие увеличения количества растворённого газа в рабочей жидкости гидравлических машин?
- 2. Какие виды потерь энергии при течении жидкости существуют? Чем они различаются?
 - 3. Назовите традиционных потребителей гидрооборудования.
 - 4. Назовите известные вам типы объемных насосов.
- 5. Что такое статическая характеристика насоса? Почему реальная характеристика имеет вид наклонной прямой?
- 6. Что такое гидравлические исполнительные механизмы? Классифицируйте их по виду движения.
 - 7. Какие функции выполняет гидробак гидромашины?
 - 8. Для чего нужны фильтры? Какие они бывают?
 - 9. Какие теплообменные аппараты используют в гидромашинах?
 - 10. Назовите варианты установки дросселей в гидролиниях?

Задачи (РОПК-1.2):

- 1. Центробежный насос 4К-18 работает с подачей Q_1 =20 л/с. Дросселированием подача уменьшается до Q_2 =10л/с. Определить, как при этом изменилась мощность насоса.
- 2. Определить частоту вращения ротора аксиально-поршневого насоса при следующих данных: подача насоса Q=15 л/мин, давление p=20 МПа, крутящий момент на валу насоса M=300 Н*м, объемный и механический КПД соответственно равны $\eta_{\rm o}=0.9$, $\eta_{\rm m}=0.92$.

Критерии оценивания: считается выполненным, если верно решена одна задача из двух и дан верный ответ на 1 теоретический вопрос (исчерпывающий или возможно с небольшими неточностями).

5. Информация о разработчиках

Фролов Олег Юрьевич, к. ф.-м. н., доцент, физико-технический факультет НИ ТГУ, доцент