Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Методы обработки астрономических наблюдений

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавриат**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности;.
- ОПК-3 Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.
- ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 1.1 Знает основные законы, модели и методы исследования физических процессов и явлений
- ИОПК 3.2Соблюдает основные требования информационной безопасности при решении задач профессиональной деятельности.
- ИПК 1.2 Владеет практическими навыками использования современных методов исследования в выбранной области

2. Задачи освоения дисциплины

Целью курса является формирование у студентов современных представлений о методах обработки геодезических измерений и задачах определения параметров математических моделей по данным измерений.

Задачами курса являются:

- Изучение способов математической обработки наблюдательных данных и интерпретации полученных результатов
- изучение классификации ошибок измерений и основных вероятностных характеристик оценок параметров моделей;
- приобретение навыков построения целевой функции в линейных и нелинейных задачах наименьших квадратов и основных алгоритмов их решения.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 7, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Теория вероятностей и математическая статистика, Линейная алгебра и аналитическая геометрия, Программирование, Технология программирования, Геодезия и геодезическое инструментоведение.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 72 часа, из которых

- лекции: 16 ч.;
- практические занятия: 16 ч.;

в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение. Предмет изучения и основные понятия

Виды моделей. Общие представления об измерениях и их ошибках. Классификация ошибок. Ошибки измерений. Ошибки модели. Случайные и систематические ошибки. Равноточные и неравноточные измерения. Коррелированные и некоррелированные измерения. Оценки и их классификация. Способы решения задач: аналитически, геометрически, численные методы. Точностью вычислений. Астрономические наблюдения. Погрешности наблюдений. Задачи математической обработки наблюдений/

Тема 2. . Задача оценки состояния реальной системы по результатам наблюдений.

Прогнозируемые, непрогнозируемые и вероятностные модели. Оцениваемые параметры. Вектор измерений. Алгоритм фильтрации. Понятие о статической и динамической фильтрации. Оценка точности определения вектора состояния по имеющимся данным об ошибках измерений и модели. Априорная и апостериорная оценки. Стратегия определения состояния системы. Оптимизация стратегии. Выбор оптимального алгоритма фильтрации, оптимального состава измерений и оптимальной математической модели. Критерии оптимальности. Одномерные и многомерные критерии. Асимптотические свойства оценок состояния реальных систем. Состоятельность оценки. Асимптотическая нормальность. Эффективность оценки.

Тема 3. Метод наименьших квадратов

Метод максимального правдоподобия. Линейная задача наименьших квадратов и ее вероятностное обоснование. Ковариационная матрица ошибок НК-оценок. Доверительные области и вычислительные аспекты их построения. Весовые матрицы и способы их построения в задачах оценивания. Нелинейная задача наименьших квадратов. Метод Ньютона, метод Гаусса—Ньютона, метод градиентного спуска и их модификации. Теоретические и практические аспекты применения методов. Методы вычисления частных производных от измеряемых параметров по определяемым параметрам в задачах опенивания.

Тема 4. **Некоторые статистические оценки, основанные на методе** максимального правдоподобия

Метод максимального правдоподобия. Случай нормального закона распределения. Алгоритмы максимального правдоподобия для других законов распределения. Метод наименьших модулей. Рекуррентные алгоритмы фильтрации.

Тема 5. Корреляционный анализ

Оценка коэффициента корреляции. Исследование значимости корреляции. Понятие частной и множественной корреляции.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу и фиксируется в форме контрольной точки не менее одного раза в семестр.

Таблица 1. Критерии оценивания практических работ

зачтено	- Получены верные результаты расчетов

	- Оформлен отчет по работе - Написан индивидуальный программный код для решения поставленной задачи
Не зачтено	Получены не верные результаты расчетовНе оформлен отчет по работенет программного кода

Таблица 2. Примерный перечень практических заданий

Практическая работа 1. Обработка результатов измерений

Практическая работа 2. Математическая обработка угловых измерений на станциях Практическая работа 3. Аппроксимация массива координат в виде степенных полиномов

Практическая работа 4. Построение доверительных областей движения астероидов

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет проводится в форме письменной работы с последующим собеседованием по программе. Результаты оцениваются по шкале «зачет» и «незачтено». Позиция «зачет» означает успешное прохождение промежуточной аттестации.

Примерные вопросы на зачете

- 1. Равноточные и неравноточные измерения. Веса измерений. Роль весовых матриц в обратных задачах
- 2. Зачем делают избыточные измерения
- 3. Случайные и систематические измерения. Есть ли грань между ними
- 4. Свойства случайных ошибок
- 5. Какие бывают ошибки измерений
- 6. Вектор состояния системы, размерность модели, вектор измерений (наблюдений).
- 7. Математическая модель задачи. Линейная и нелинейная модель.
- 8. Как определяется вектор невязок (формула, словами).
- 9. Задача алгоритма фильтрации
- 10. Апостериорная оценка точности
- 11. Какие основные методы решения нелинейных задач НК?
- 12. Достоинства метода дифференциальных поправок. Скорость сходимости метода дифференциальных поправок
- 13. Достоинства метода Ньютона. Недостатки метода Ньютона. Скорость сходимости метода Ньютона
- 14. Какую матрицу называют матрицей Гессе? Какой должна быть матрица Гессе, чтобы задача НК была корректной?
- 15. Что нужно знать для нахождения оценок по методу максимального правдоподобия? Когда данный метод позволяет находить наилучшие оценки вектора состояния. Какие трудности возникают при этом.
- 16. К какой задаче сводится метод максимального правдоподобия при нормальном распределении ошибок измерений? При законе Лапласа

- 17. Какие существуют способы вычисления матриц частных производных от измеряемых параметров по определяемым параметрам? Особенности определения частных производных способом конечных разностей. Какой способ определения матриц частных производных чаще применяется в геодезии? Какой способ определения матриц частных производных чаще применяется в небесной механике?
- 18. Как можно оценить точность полученного решения. Запишите формулы.
- 19. В методе дифференциальных поправок знать что означает каждый параметр. В чем отличие решения линейной задачи от нелинейной.
- 20. Целевая функция. Формула в задаче наименьших квадратов.
- 21. Какие области в математической статистике называются доверительными областями?
- 22. Как называются доверительные области в одномерных задачах
- 23. Какой вид доверительных областей в линейных задачах имеет наименьшие размеры?
- 24. Что является центром доверительных областей

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=00000
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Мудров В.И., Кушко В.Л. Методы обработки измерений: Квазиправдоподобные оценки.М.: Радио и связь, 1983. 304 с.
- 2. Линник Ю.В. Метод наименьших квадратов и основы теории обработки наблюдений. М.:Физматгиз, 1962. 352 с.
- 3. Авдюшев В.А. Численное моделирование орбит. Томск: Изд-во НТЛ, 2010. 284 с.
- 4. Маркузе Ю.И. Основы уравнительных вычислений. М.: Недра, 1990. 240 с.
- б) дополнительная литература:
- 1. Дрейпер Н., Смит Г. Прикладной регрессионный анализ: В 2-х кн. М.: Финансы и статистика, 1986.
- 2. Жданюк Б Ф. Основы статистической обработки траекторных измерений. М.: Сов. радио, 1978. 384 с.
- 3. Андронов А.М., Копытов Е.А., Гринглаз Л.Я. Теория вероятностей и математическая статистика: Учебник для вузов. СПб.: Питер, 2004. 461 с
- 4. Воеводин В.В. Энциклопедия линейной алгебры. Электронная система ЛИНЕАЛ. СПб.: БХВ-Петербург, 2006. 544 с.
- 5. Уоткинс Д.С. Основы матричных вычислений. М.: БИНОМ. Лаборатория знаний, 2006. 644 с.

- 6. Аттетков А.В., Галкин С.В., Зарубин В.С. Методы оптимизации. М.: Изд-во МГТУ, 2001. 440 с.
- в) ресурсы сети Интернет:
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Сюсина Ольга Михайловна, к ф.-м. н., доцент кафедры АиКГ ФФ ТГУ