Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Физическая и коллоидная химия

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения Очная

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-6 Способен использовать в профессиональной деятельности основные законы физики, химии, наук о Земле и биологии, применять методы математического анализа и моделирования, теоретических и экспериментальных исследований, приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-6.1 Использует основные законы физики, химии, наук о Земле и биологии в профессиональной деятельности

ИОПК-6.2 Применяет методы математического анализа и моделирования, теоретических и экспериментальных исследований

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты по лекционному материалу;
- задания к лабораторным работам;
- итоговый тест.

Тест

- 1. Что составляет внутреннюю энергию тела? (ИОПК-6.1)
 - а) Только кинетическая энергия
 - б) Только потенциальная энергия
 - в) Кинетические и потенциальные энергии структурных единиц тела
 - г) Энергия, связанная с движением вещества
- 2. Выберите знак ΔG, при котором процесс протекает самопроизвольно в прямом направлении (в изобарно-изотермических условиях). (ИОПК-6.2)
 - a) $\Delta G > 0$
 - 6) $\Delta G < 0$
 - B) $\Delta G = 0$
 - г) В данных условиях ΔG не является критерием направленности процесса

Ключи: 1 в), 2 б).

Критерии оценивания: полностью правильный ответ на вопрос оценивается в 1 балл. Полностью неверный ответ оценивается в 0 баллов.

Примеры заданий к лабораторным работам (ИОПК-6.1, ИОПК-6.2):

Задание к лабораторной работе по теме: «Определение температуры кипения жидкости и ряда термодинамических пар характеристик процесса испарения».

1. Рассмотрите теоретические аспекты работы.

Результат – Логический переход, от определения температуры кипения жидкости к возможности расчета целого ряда термодинамических параметров процесса испарения.

2. Опишите, какие правила техники безопасности необходимо выполнять при проведении работы. Каков порядок выполнения работы?

Результат – Комплексное представление об экспериментальной части лабораторной работы.

3. Рассчитайте термодинамические параметры процесса испарения неассоциированной жидкости, на основе экспериментальных данных, оцените точность полученных величин. Какую информацию о процессе дают его термодинамические параметры?

Результат — Представление о возможностях теоретического и экспериментального применения аппарата химической термодинамики.

Задание к лабораторной работе по теме «Определение электродвижущей силы элемента Даниэля-Якоби».

1. Рассмотрите теоретические аспекты работы.

Результат – Представление о разных возможностях определения электродвижущей силы (ЭДС) элемента.

2. Опишите, какие правила техники безопасности необходимо выполнять при проведении работы. Каков порядок выполнения работы?

Результат – Комплексное представление об экспериментальной части лабораторной работы.

Задание к лабораторной работе по теме «Коагуляция коллоидных растворов электролитами».

1. Рассмотрите теоретические аспекты работы.

Результат – Представление о закономерностях процессов коагуляции золей электролитами.

2. Опишите, какие правила техники безопасности необходимо выполнять при проведении работы. Каков порядок выполнения работы?

Результат – Комплексное представление об экспериментальной части лабораторной работы.

3. Выполните опыты по предлагаемым методикам, рассчитайте пороги коагуляции для коагулирующих ионов разной зарядности, найдите соотношение порогов коагуляции и сопоставьте его с закономерностью, даваемой правилом Шульце-Гарди.

Результат – Получение навыков определения порогов коагуляции, понимание важности учета коагулирующей способности электролитов.

Критерии оценивания:

Выполненное задание по приведенной таблице оценивается максимум в 14 баллов.

Критерий	Пункты			
Критерии				
Знает основные законы и	Отсутствие	Неполное	_	
	знаний и	знание	Знает основные	
	понимания	основных	законы и	Имеет системные
	основных	законов и	закономерности	знания по
	законов и	закономер-	физической и	физической и
закономерности физической и	закономер-	ностей	коллоидной	коллоидной
коллоидной химии,	ностей	физической и	химии, имеет	химии и области
область их	физической и	коллоидной	неполное	
	коллоидной	химии и	знание области	их применения 3 балла
применения	химии и области	области их	их применения	J Gamia
	их применения	применения	2 балла	
	0 баллов	1 балл		
Имеет навыки работы	Нет	Имеет навыки	Имеет навыки	Имеет навыки
и проведения	систематизиро-	проведения	проведения	проведения
экспериментов по	ванных навыков	экспериментов	экспериментов	экспериментов с
физической и	работы и	с применением	с применением	применением
коллоидной химии,	проведения	химических и	химических и	химических и
выполняет нормы	экспериментов,	физико-	физико-	физико-
техники	решения	химических	химических	химических
безопасности, решает		методов, знает	методов, знает	методов, знает и
типовые задачи	0 баллов	нормы	и выполняет	выполняет

		безопасности 1 балл	нормы безопасности 2 балла	нормы безопасности, решает типовые задачи
Проводит эксперимент по физической и коллоидной химии, используя предлагаемые методики. Оценивает результаты своей деятельности для окружающей среды	Допускает грубые ошибки при работе по предлагаемым методикам, не оценивает результаты своей деятельности для окружающей среды 0 баллов	Допускает мелкие ошибки при работе по предлагаемым методикам, не оценивает результаты своей деятельности для окружающей среды	Правильно проводит химические и физико-химические эксперименты, но не видит цель работы и этапы ее достижения, возможности применения других методов исследования 2 балла	З балла Правильно проводит химические и физико- химические эксперименты, видит цель работы и этапы ее достижения, возможности применения других методов исследования З балла
Знает правила оформления отчетов по лабораторным работам, видит источники происхождения погрешностей результатов	Допускает грубые ошибки при оформлении отчетов, оценке точности результатов 0 баллов	Допускает мелкие ошибки при оформлении отчетов и грубые ошибки при оценке точности результатов 1 балл	Допускает мелкие ошибки при оформлении отчетов, оценке точности результатов	Адекватно представляет результаты экспериментальных работ, точность полученных результатов 3 балла
Находит необходимую информацию в учебной литературе и справочниках, применяет методы математического анализа	Затрудняется в поисках необходимой информации, нахождении верных алгоритмов решения задач 0 баллов	Находит необходимую информацию, затрудняется в нахождении верных алгоритмов решения задач 1 балл	Находит необходимую информацию, использует методы аналитического анализа при решении задач по физической и коллоидной химии 2 балла	

Итоговый тест. Тестирование проводится по всем изученным темам. В тестах представлено несколько типов вопросов:

1. Требуется дать развернутый ответ на вопрос.

Пример: «Сущность метода стационарных концентраций заключается в...»

2. Требуется выбрать один ответ из представленных.

Пример: «Электрическая проводимость водного раствора электролита максимальна:

- а) в его насыщенном растворе;
- б) в его концентрированном растворе;
- в) при бесконечном разведении.»
- 3. Требуется выбрать несколько ответов из представленных.

Пример: «Зависимость константы равновесия от температуры описывается:

- а) уравнением изобары Вант-Гоффа;
- 6) уравнением изотермы Вант-Гоффа;
- в) уравнением изохоры Вант-Гоффа;
- г) уравнением нормального сродства.»
- 4. Требуется решить задачу, имеющую небольшую расчетную базу и требующую знания основополагающих законов.

Пример: «Для получения золя хлористого серебра смешали 20 мл 0,01 М раствора хлористого калия и 10 мл 0,005 М раствора азотнокислого серебра. Формула мицеллы имеет вид ... (Запишите).»

Ключи:

1 приравнивании к нулю скорости накопления высокоактивных (промежуточных) веществ; 2 в); 3 а), в); 4 {m [AgCl] nCl $^-$ (n-x)K $^+$ } $^{x-}$ xK $^+$.

Критерии оценивания: полностью правильный ответ оценивается в 1 балл. Частично правильный ответ оценивается в 0,5 балла. Полностью неправильный ответ оценивается в 0 баллов. Максимальное количество баллов за итоговый тест равно 50 баллам.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет в четвертом семестре проводится на основе суммы баллов, который студент получил в течение семестра. Если студент набрал суммарный рейтинг на общую сумму баллов, равную 85 % от максимально возможной суммы баллов, то он получает зачет.

Компетенция	Индикатор компетенции	Не зачтено	Зачтено	
ОПК-6	ИОПК-6.1.	Менее 71 балла	71 балл и выше	
	ИОПК-6.2.	Менее 71 балла	71 балл и выше	
Итого		Менее 142 баллов	142 балла и выше	

Если набрано меньше 85 % баллов от максимально возможной суммы, то студент сдает устный зачет по билетам. Каждый билет содержит 2 теоретических вопроса, ответ на которые отражает освоение студентом индикаторов ИОПК-6.1., ИОПК-6.2. Продолжительность зачета 1 час.

Каждый билет содержит 2 теоретических вопроса из перечня:

- 1. Первый закон термодинамики: формулировки. Работа, теплота, энергия, функции состояния, система и внешняя среда.
 - 2. Закон Гесса и следствия из него.
 - 3. Теплоемкость. Закон Кирхгофа.
 - 4. Второй закон термодинамики. Расчет изменения энтропии для разных процессов.
 - 5. Энергия Гиббса и энергия Гельмгольца. Критерии направленности процесса.
 - 6. Третий закон термодинамики. Расчет абсолютного значения энтропии.
- 7. Понятие о химическом потенциале. Закон действующих масс, расчет химических равновесий. Уравнения изотермы, изобары и изохоры химической реакции.
- 8. Фазовое равновесие: правило фаз Гиббса. Уравнение Клапейрона-Клаузиуса. Диаграммы состояния однокомпонентных систем.
- 9. Способы выражения состава растворов. Закон Рауля. Криоскопия, эбуллиоскопия, осмос.

- 10. Законы Коновалова. Перегонка и ректификация. Взаимно нерастворимые жидкости, расходный коэффициент водяного пара.
 - 11. Коэффициент распределения, учет диссоциации, ассоциации. Экстракция.
- 12. Теория электролитической диссоциации Аррениуса; основные положения современной теории электролитов. Удельная и эквивалентная электрические проводимости.
- 13. Электродвижущая сила, ее определение. Виды цепей. Диффузионный потенциал.
- 14. Скорость химической реакции. Основной постулат химической кинетики. Порядок и молекулярность химической реакции. Методы определения порядка реакции.
- 15. Зависимость константы скорости химической реакции от температуры: правило Вант-Гоффа, уравнение Аррениуса.
- 16. Сложные химические реакции, их виды. Метод стационарных концентраций. область его применения.
 - 17. Катализ: общие принципы, механизмы каталитических реакций.
 - 18. Свойства дисперсных систем, особенности коллоидного состояния.
- 19. Классификации дисперсных систем. Молекулярно-кинетические свойства коллоидных систем.
 - 20. Методы получения коллоидных систем.
- 21. Оптические свойства коллоидных систем. Эффект Тиндаля. Уравнение Рэлея. Нефелометрия.
 - 22. Строение мицеллы. Правило Панета-Фаянса-Пескова.
- 23. Устойчивость и коагуляция золей. Правило Шульца-Гарди. Взаимная коагуляция.
- 24. Поверхностные явления. Сорбция. Поверхностно-активные вещества. Строение двойного электрического слоя.
 - 25. Адсорбция на гладкой однородной поверхности. Уравнение Гиббса.
- 26. Адсорбция на границе раздела твердое тело газ и твердое тело жидкость. Уравнение Ленгмюра.
 - 27. Грубодисперсные системы, их виды, применение.
 - 28. Суспензии: классификация, гелеобразование, тиксотропия.
- 29. Эмульсии: классификация, виды эмульсий и эмульгаторов, обращение фаз эмульсий; применение эмульсий.
 - 30. Пены, их классификация, устойчивость и значение.
 - 31. Аэрозоли, их классификация, применение, значение.
 - 32. Порошки, их классификация, применение, значение.

Критерии оценивания:

Оценка	Критерии оценки			
Не зачтено	Нет ответа даже на общие вопросы			
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы			

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

ИОПК-6.1 Использует основные законы физики, химии, наук о Земле и биологии в профессиональной деятельности

- 1. Выберите правильный вариант расчета молярной концентрации вещества:
 - а) масса вещества/объем раствора;
 - б) масса вещества/объем растворителя;

- в) число моль вещества/объем раствора;
- г) число моль вещества/объем растворителя.
- 2. Выберите правильный вариант расчета молярной доли вещества:
 - а) число моль вещества/число моль раствора;
 - б) число моль вещества/объем растворителя;
 - в) число моль вещества/объем раствора;
 - г) число моль вещества/число моль растворителя.
- 3. Какой из растворов наиболее близок к модели идеального раствора?
 - а) Разбавленный;
 - б) Насыщенный;
 - в) Концентрированный;
 - г) Предельно разбавленный.
- 4. Выберите параметр, который обеспечивает изобарные условия:
 - a) P = const;
 - б) V = const;
 - B) T = const;
 - Γ) Q = const.

Ключи: 1 в), 2 а), 3 г), 4 а).

ИОПК-6.2 Применяет методы математического анализа и моделирования, теоретических и экспериментальных исследований

- 1. Какой метод исследования используется для измерения интенсивности рассеянного света в дисперсной системе?
 - а) Спектроскопия;
 - б) Нефелометрия;
 - в) Хроматография;
 - г) Электрофорез.
- 2. Какой эффект лежит в основе ультрамикроскопии?
 - а) Эффект Фарадея;
 - б) Эффект Доплера;
 - в) Эффект Тиндаля;
 - г) Эффект Рамана.
- 3. Какой метод используется для разделения гомогенной смеси веществ на отдельные компоненты с помощью вспомогательного растворителя, вызывающего расслаивание?
 - а) Дистилляция;
 - б) Экстракция;
 - в) Фильтрация;
 - г) Кристаллизация.
- 4. Какой процесс характеризуется самопроизвольным переходом молекул растворителя из более разбавленного раствора в менее разбавленный через полупроницаемую мембрану?
 - а) Конденсация;
 - б) Экстракция;

- в) Осмос;
- г) Конвекция.

Ключи: 1 б), 2 в), 3 б), 4 в).

Информация о разработчиках

Белик Юлия Алексеевна, кандидат химических наук, кафедра физической и коллоидной химии Химического факультета ТГУ, старший преподаватель.

Александрова Светлана Яковлевна, кандидат химических наук, доцент, кафедра физической и коллоидной химии Химического факультета ТГУ, доцент.

Сидорова Ольга Ивановна, кандидат химических наук, кафедра физической и коллоидной химии Химического факультета ТГУ, доцент.