Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

Фонд оценочных средств

Физические методы исследования

по направлению подготовки

04.03.01 Химия

Направленность (профиль) подготовки: «Химия»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема 2022

Код дисциплины в учебном плане: Б1.В.09

СОГЛАСОВАНО:

Руководитель ОП

В.В. Шелковников

Председатель УМК

ДИМИ Л.Н. Мишенина

Томск - 2022

1 Паспорт фонда оценочных средств

Направление подготовки	04.03.01 химия
Дисциплина	Физические методы исследования
Семестр обучения	5
Общий объем дисциплины, ЗЕ	3
Формы текущего контроля	устный опрос/ отчет по лабораторной
	работе /тестирование
Форма промежуточной аттестации	зачет

Оценивание результатов учебной деятельности обучающихся при изучении дисциплины осуществляется по текущему контролю и промежуточной аттестации

2 Перечень формируемых компетенций и уровни их освоения

Изучение дисциплины «Хроматографические методы» направлено на формирование следующих компетенций:

Vorus	Индикатары			
Коды и	Индикаторы	Парацаци плочи	nyami iy naayiii toton ofyiiayyya	
содержание компетенций по	достижения	Перечень планируемых результатов обучения		
СУОС	компетенций	по дисциплине		
ОПК-1. Способен	согласно ООП ИОПК 1.1.	Лонопологий	По оторобом оторують за	
		Допороговый	Не способен анализировать	
анализировать и	Систематизирует и	уровень	и интерпретировать	
интерпретировать	анализирует		результаты химических	
результаты	результаты		экспериментов, наблюдений	
химических	химических		и измерений,	
экспериментов,	экспериментов,		формулировать заключения	
наблюдений и	наблюдений,		и выводы.	
измерений.	измерений, а также			
	результаты	Πορογοσιή	Способен анализировать и	
	расчетов свойств	Пороговый уровень	предложить интерпретацию	
	веществ и	уровень Достаточный	результаты химических	
	материалов.	уровень	экспериментов, наблюдений	
	********	уровень	и измерений, но	
	ИОПК 1.2.		затрудняется	
	Предлагает		1.0	
	интерпретацию		формулировать заключения	
	результатов		и выводы.	
	собственных	Достаточный	Способен анализировать и	
	экспериментов и	уровень	интерпретировать	
	расчетно-		результаты собственных	
	теоретических		химических	
	работ с		экспериментов и расчетно-	
	использованием		теоретических работ с	
	теоретических		использованием	
	основ		теоретических основ	
	традиционных и		традиционных и новых	
	новых разделов		разделов химии, но	
	химии.		затрудняется	
			самостоятельно	
			формулировать заключения	
			и выводы.	

	попи 1 2	п .	0 6
	ИОПК 1.3.	Продвинутый	Способен анализировать и
	Формулирует	уровень	интерпретировать
	заключения и		результаты собственных
	выводы по		химических
	результатам		экспериментов и расчетно-
	анализа		теоретических работ с
	литературных		использованием
	данных,		теоретических основ
	собственных		традиционных и новых
	экспериментальны		разделов химии,
	х и расчетно-		самостоятельно
	теоретических		формулировать заключения
	работ химической		и выводы.
	направленности.		
ОПК-2. Способен	ИОПК 2.1.	Допороговый	Не способен работать с
проводить с	Работает с	уровень	химическими веществами с
соблюдением норм	химическими		соблюдением норм техники
техники	веществами с		безопасности.
безопасности	соблюдением норм	Пороговый	Способен работать с
химический	техники	уровень	химическими веществами с
эксперимент,	безопасности.		соблюдением норм техники
включая синтез,	ИОПК-2.3.		безопасности, но в ряде
анализ, изучение	Проводит		случаев допускает ошибки.
структуры и	стандартные	Достаточный	Способен работать с
свойств веществ и	операции для	уровень	химическими веществами с
материалов,	определения	71	соблюдением норм техники
исследование	химического и		безопасности, в редких
процессов с их	фазового состава		случаях допускает ошибки.
участием.	веществ и	Продвинутый	Способен работать с
	материалов на их	уровень	химическими веществами с
	основе.	ypootiio	соблюдением норм техники
	ИОПК-2.4.		безопасности, практически
	Проводит		не допускает ошибок.
	исследования		no gonyekaer omnook.
	свойств веществ и		
	материалов с		
	использованием		
	серийного		
	научного		
	1		
	оборудования.		

Уровни и шкала оценивания сформированности компетенций:

Допороговый уровень	Соответствует оценке «неудовлетворительно»,	
	предполагает несформированность компетенций на	
	достаточном уровне.	
Пороговый уровень	Соответствует оценке «удовлетворительно»,	
	предполагает сформированность компетенций на	
	достаточном уровне.	
Достаточный уровень	Соответствует оценке «хорошо»,	
	предполагает сформированность компетенций на	
	достаточно хорошем уровне.	

Подвинутый уровень	Соответствует оценке «отлично»,
	предполагает сформированность компетенций на высоком
	уровне.

2 Этапы формирования компетенций и оценочные средства (текущая аттестация)

2.1 Виды оценочных средств

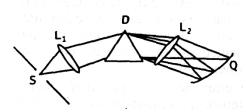
		Наименование	Код индикатора
№	Контролируемые темы/разделы	оценочного	достижения
745	контролируемые темы/разделы	средства для	компетенции
		текущего контроля	согласно ОПП
1	Тема 1. Метод атомно-эмиссионной	Устный опрос/	ИОПК-2.1
	спектроскопии (АЭС).	отчет по	ИОПК-2.3
		лабораторной	ИОПК-2.4
		работе	
2	Тема 2. Метод атомно-эмиссионной	Устный опрос/	ИОПК-2.1
	фотометрии пламени.	отчет по	ИОПК-2.3
		лабораторной	ИОПК-2.4
		работе/коллоквиум	
3	Тема 3. Методы атомной абсорбционной	Устный опрос/	ИОПК-2.1
	спектрометрии.	отчет по	ИОПК-2.3
		лабораторной	ИОПК-2.4
		работе/коллоквиум	
4	Тема 4. Молекулярная абсорбционная	Устный опрос/	ИОПК-2.1
	спектроскопия в видимой и УФ областях	отчет по	ИОПК-2.3
		лабораторной	ИОПК-2.4
		работе	
5	Тема 5. Использование рентгеновского	Устный опрос/	ИОПК-2.1
	излучения для анализа состава и структуры	отчет по	ИОПК-2.3
	веществ.	лабораторной	ИОПК-2.4
		работе	
6	Тема 6. Материалы лекций и вводных бесед	Тестирование	ИОПК-1.1
	перед проведением лабораторных занятий		ИОПК-1.2
			ИОПК-1.3

Текущий контроль влияет на промежуточную аттестацию. Студенты, которые выполнили все лабораторные работы и при защите отчетов получили оценку не ниже «удовлетворительно» допускаются к тестированию.

Тестирование осуществляется в системе Moodle. Все тестовые задания, в соответствие с темами курса, сгруппированы в 5 категорий. Студент должен ответить в течение 50 минут на 25 случайно выпадающих вопросов из банка данных.

2.2 Содержание оценочных средств

Примеры вопросов для устного опроса:


- 1. Поясните термины: энергетические уровни, основное (нормальное) состояние, возбужденное состояние, поглощение, испускание, фотон, длина волны, частота, спектральная линия, интенсивность спектральной линии, спектр поглощения, спектр испускания?
- 2. Какие горючие смеси используют для определения щелочных и щелочноземельных элементов методом эмиссионной фотометрии пламени?
- 3. Перечислите наиболее важные параметры электромагнитного излучения.

- 4. Охарактеризуйте все виды процессов, протекающих в плазме дугового разряда, и факторы, влияющие на интенсивность спектральных линий.
- 5. Теоретические основы метода спектрофотомерии.
- 6. Укажите, по каким признакам можно классифицировать спектры. Укажите три основные характеристики спектральной линии.
- 7. Выбор оптимальных условий фотометрического определения.
- 8. Какие факторы влияют на степень атомизации вещества в пламени?
- 9. По каким принципам можно классифицировать спектроскопические методы? Каков характер физических процессов в атомах и молекулах в зависимости от энергии электромагнитного излучения?
- 10. Что называют коэффициентом пропускания T и оптической плотностью A? Сигналы используемые при построении калибровочных графиков в AAC.

Примеры вопросов для теста:

Bonpoc №1. На рисунке приведена оптическая схема спектрографа ...

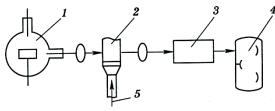
- 1. Дифракционного
- 2. Призменного
- 3. Коллиматорного
- 4. Комбинированного

Вопрос №2. Окрашенный раствор поместили в кювету с толщиной светопоглощающего слоя 1см, $\varepsilon = 10^4$. Какова оптическая плотность раствора с концентрацией $1 \cdot 10^{-4}$ моль/л?

1. 100

2. 0,1

3. 0,01

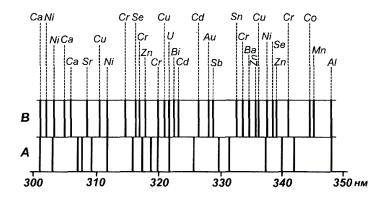

4. 1,0

Вопрос №3. Излучение с длиной волны $9 \cdot 10^{-5}$ см относится к...

1. Видимой области спектра	3. ИК-области спектра
2. УФ-области спектра	4. МВ-излучению

Bonpoc №4. На рисунке приведена схема атомно-абсорбционного спектрометра. Номером 2 обозначен:

- 1. Источник возбуждения
- 2. Монохроматор
- 3. Приемник света
- 4. Источник атомизации



Вопрос № 5 На рисунке представлен

упрощенный (все линии одинаковой толщины) фрагмент (300-350 μ м) спектра железа A), а также фрагменты спектров элементов B)

Из следующих утверждений отметьте истинное:

- 1. Для определения хрома в сталях удобно использовать линии 315, 317 и 334 нм
- 2. Для определения следов цинка в медных рудах удобна линия 336 нм
- 3. Для количественного определения меди в сталях интенсивность ее линии 311 *нм* удобно сравнивать с интенсивностью линии железа 330 *нм*

Шкала оценивания результатов тестирования

Оценивание				
ответов на вопросы	< 20	20–29	30–39	40–50
теста в баллах				
Сформированность	Не сформиро-	Сформированы	Сформированы	Сформированы
компетенций	ваны	фрагментарно	частично	полностью
Рекомендовано	Повторное тестирование	Зачет-автомат	Зачет-автомат	Зачет-автомат

Зачет в пятом семестре получают студенты, выполнившие все лабораторные работы, защитившие отчеты на оценку не ниже «удовлетворительно», набравшие за выполнение тестового задания не менее 20 баллов.