Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Физика неупорядоченных полупроводников

по направлению подготовки

03.04.02 – Физика

Направленность (профиль) подготовки «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск-2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта

Результатами освоения дисциплины являются следующие индикаторы достижения компетенний:

ИПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

- Получить представления о неупорядоченных (сильнолегированных, облученных, поликристаллических, аморфных и др.) полупроводников, их свойствах и применениях.
- Научиться применять понятийный аппарат дисциплины «Неупорядоченные полупроводники» для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Физика полупроводников. Микроэлектроника». Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, устный экзамен.

5. Входные требования для освоения дисциплины

Наличие у студента компетенций, сформированных при освоении дисциплин: «Физика твердого тела», «Физика полупроводников». Обучающийся должен уметь работать в поисковых системах и осуществлять поиск информации, владеть английским языком в объеме достаточном для чтения научной и учебной литературы по специальности.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

– лекции: 24 ч.:

в том числе практическая подготовка: 12 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

No	Тема	Содержание темы
1	Несовершенство	Порядок/беспорядок в мире атомов (молекул),
1	строения реальных	микроскопический и макроскопический порядок/беспорядок,
	кристаллов	газы, жидкости, твердые тела. Классификация собственных
		дефектов по размерности, равновесные и неравновесные
		дефекты, причины образования дефектов.
2	Неупорядоченные	Ближний и дальний порядок, определение неупорядоченной
	полупроводники	конденсированной системы, критерий электронной
		неупорядоченности, одномерные модели: периодический
		потенциал (модель Кронига-Пенни), непериодический
		потенциал (модели Лившица и Андерсона); критерии
		локализованного и нелокализованного состояний, переход
		Андерсона.
3	Сильнолегированные	Легирование полупроводников, "мелкие" и "глубокие"
İ	полупроводники	примеси, пределы уровня легирования и растворимости
		химической примеси; водородоподобные примесные уровни,
		изменение электронного спектра полупроводника при
		легировании, иерархия энергий, критерии слабого,
		промежуточного и сильного легирования, хвосты плотности
<u> </u>		состояний, переход Мотта, изоконцентрационный переход,.
4	Компенсированные	Критерий слабой и сильной компенсации, механизмы
	полупроводники	компенсации (образование собственных дефектов, переход
		примесного центра в низкосимметричное состояние,
		перераспределение атомов примеси по анионной и катионной
		подрешеткам), электронные спектры полупроводников при
		разной степени компенсации, уровень протекания,
-	06	экранирование в компенсированных полупроводниках.
5	Облученные	Образование дефектов при высокоэнергетическом облучении, типы радиационных дефектов, изменение свойств
	полупроводники.	полупроводников при облучении, закрепление (пиннинг)
		уровня Ферми при облучении, оценка предельного положения
		уровня Ферми при облученном полупроводнике (средняя энергия
		гибридной связи в модели ЛКАО, уровень локальной
		зарядовой нейтральности), облучение как процесс
		самокомпенсации полупроводника.
6	Поликристаллические	Дислокации и их типы, полные и частичное дислокации,
	и деформированные	вектор Бюргерса, энергия дислокации, электронная структура
	полупроводники.	дислокаций, закрепление уровня Ферми в
		сильнодислокационных образцах. Поликристаллы,
		электронная структура межкристаллитных границ, перенос
		заряда в поликристаллах.
7	Аморфные	Способы получения, структурные модели (модель случайной
	полупроводники	сетки с увязанными связями (С. Polk), полимерно -
		кристаллическая модель (А.А. Лебедев), модель случайной
		сетки с оборванными связями; электронные спектры аморфных
		полупроводников(модели Губанова, Коэна-Фрицше-
		Овшинского(КФО)), Мотта -Дэвиса (МД)), щель подвижности,
		закрепление уровня Ферми, пассивации (гидрогенизация),
		двухэлектронные состояния, центры с отрицательной
		корреляционной энергией U.
8	Стеклобразные	Стеклообразное состояние, получение стекол, критерии
ĺ	полупроводники	стеклования, диаграммы переходов кристалл – расплав -

	11	стекло-, критерий стеклообразования, стекла типа "Ge" и "Se", структура стекол (модель неправильной непрерывной сетки (В. Захариасен, 1932 г.), полимерно — кристаллическая модель (А.А. Лебедев), электронная структура стекол (модели КФО, МД, КФО-МД)
9	Неполновалентные ("дефектные") полупроводники.	Законы стехиометрии, стехиометрические и нестехиометрические дефекты, фазовый переход упорядоченное (α - фаза) \rightarrow статистическое (неупорядоченное) состояние (β - фаза), особенности электрических свойств неполновалентных полупроводников, легирование химическими примесями.
10	Твердые растворы (сплавы) полупроводников.	Типы растворов (замещения, внедрения, вычитания), условия образования растворов, локальная координация (модель случайных ковалентных связей, модель химически упорядоченной сетки), приближение виртуального кристалла, упорядоченный и неупорядоченный раствор, молекулярные комплексы в неупорядоченном твердом растворе.
11	Релаксационные полупроводники	Релаксационные и рекомбинационные полупроводники, флуктуационное электрическое поле в релаксационном полупроводнике, особенности переноса заряда, условие стационарного состояния, квазиуровни Ферми, рекомбинационный потенциал, р-п переход в рекомбинационном и релаксационном полупроводнике, сравнительные характеристики релаксационных и рекомбинационных полупроводников.
12	Жидкие полупроводники	Раствор, расплав, электронный расплав, жидкий полупроводник, классификация переходов твердая фазажидкость, термодинамические характеристики перехода, изменение структуры ближнего прядка при переходе твердая фаза— жидкость, расплавы типа "Si" и "CdTe", химические примеси, методы исследования расплавов.
13	Свойства неупорядоченных полупроводников.	Эффект Холла, термоэдс, статическая электропроводность, проводимость с переменной длиной прыжка, закон Мотта, кулоновская щель, динамическая электропроводность, оптическое поглощение.
14	Получение и применение неупорядоченных полупроводников.	Методы получения неупорядоченных полупроводников, перспективы применения (пороговые переключатели, элементы памяти, солнечные элементы).

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания аттестации

Промежуточная аттестация проводится в виде экзамена. К экзамену допускаются студенты, успешно прошедшие все текущие аттестации. Экзамен проводится в устной форме по билетам, содержащим теоретические вопросы, предполагающие развернутый ответ и проверяющие ИОПК-2.2, а также по контрольным вопросам по материалу курса, требующим краткий ответ и проверяющим ИПК-1.1. Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22922
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Ансельм А. И. Введение в теорию полупроводников /А. И. Ансельм . Санкт-Петербург: Лань , 2016.- 618 с.
- 2. Куэй Р. Электроника на основе нитрида галлия. М.: Техносфера, 2011. 356 с.
- 3. Игнатов А. Н. Оптоэлектроника и нанофотоника / А. Н. Игнатов. Санкт-Петербург: Лань , 2012, 310 с.
- 4. Сорокин В.С., Антипов Б. Л., Лазарева Н.П. Материалы и элементы электронной техники. Проводники, полупроводники, диэлектрики. Санкт-Петербург : Лань , 2015. 442 с.
 - б) дополнительная литература:
- 1. Забродский А.Г., Немов С.А., Равич Ю.И. Электронные свойства неупорядоченных систем. С.-Петербург: Наука, 2000. 70 с.
- 2. Брудный В.Н. Сильно легированные полупроводники (учебно-методическое пособие). Томск: Изд-во ТГУ, 2001. 14 с.
- 3. Меден А., Шо М. Физика и применение аморфных полупроводников. М.: Мир, 1991ю 670 с.
- 4. Бонч-Бруевич В. Л. и др. Электронная теория неупорядоченных полупроводников. М.: Наука, 1981. 383 с.
- 5. Мотт Н., Дэвис Э. Электронные процессы в некристаллических веществах. Т.1., Т.2 М.: Мир, 1982. 663 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Брудный Валентин Натанович, доктор физ.-мат. наук, ТГУ, кафедра физики полупроводников, профессор.