Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Радиофизический факультет

УТВЕРЖДЕНО: Декан А. Г. Коротаев

Оценочные материалы по дисциплине

Машинное обучение

по направлению подготовки / специальности

03.03.03 Радиофизика

Направленность (профиль) подготовки/ специализация: **Киберфизические системы, прикладная электроника и квантовые технологии**

Форма обучения **Очная**

Квалификация Радиофизик-кибернетик, преподаватель. Разработчик киберфизических и квантовых систем

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.А. Доценко

Председатель УМК А.П. Коханенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- БК-1 Способен применять общие и специализированные компьютерные программы при решении задач профессиональной деятельности.
- ПК-2 Способен проводить математическое моделирование процессов в приборах и устройствах радиофизики и электроники, владеть современными отечественными и зарубежными пакетами программ при решении при решении профессиональных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РОБК 1.1 Знает правила и принципы применения общих и специализированных компьютерных программ для решения задач профессиональной деятельности
- РОБК 1.2 Умеет применять современные ІТ-технологии для сбора, анализа и представления информации; использовать в профессиональной деятельности общие и специализированные компьютерные программы
- РОПК 2.1 Знает принцип действия и модели разрабатываемого радиоэлектронного прибора или устройства
- РОПК 2.2 Умеет применять в профессиональной деятельности различные численные методы, в том числе реализованные в готовых библиотеках при решении конкретных радиофизических задач.
- РОПК 2.3 Владеет современными пакетами программ при решении задач в области радиофизики и радиоэлектроники.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- опрос
- проверка результатов выполнения лабораторной работы

Контрольные вопросы по дисциплине (РОБК 1.1, РОБК 1.2)

- 1. Что такое машинное обучение, какие существуют его основные типы?
- 2. В чем разница между обучением с учителем, без учителя и с подкреплением?
- 3. Как работает линейная регрессия, какие у неё предположения?
- 4. Какие метрики используются для оценки качества регрессии? В чем их отличия?
- 5. Как работает градиентный спуск? Чем он отличается от стохастического градиентного спуска (SGD)?
- 6. Какие проблемы могут возникнуть при его использовании и как их решать?
- 7. Чем отличается логистическая регрессия от линейной? Как она предсказывает вероятности?
- 8. Какие метрики качества используются в классификации?
- 9. Как работает градиентный бустинг и чем он отличается от случайного леса?
- 10. Как работает многослойный персептрон? В чем его ограничения?
- 11. Чем отличаются функции активации (relu, sigmoid, tanh), когда какую лучше применять?
- 12. Какие шаги необходимо выполнить перед обучением модели?

Критерии оценивания: опрос считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

- 1. Линейная регрессия.
- 2. Классификация рукописных цифр.
- 3. Методы кластеризации для сегментации.
- 4. Обучение нейронной сети для классификации изображений.

Текущая аттестация по лабораторным работам проводится в виде отчетов по лабораторной работе. Результаты выполнения лабораторных работ определяются оценками «зачет», «незачет». Оценка «зачет» ставится если обучающийся ответил минимум на половину вопросов по теме лабораторной работы

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзаменационный билет состоит из двух вопросов по двум темам.

Перечень вопросов (РОБК 1.1, РОБК 1.2, РОПК 2.1, РОПК 2.2, РОПК 2.3):

- 1. Основные типы задач машинного обучения. Сравнительная характеристика методов обучением с учителем, без учителя и с подкреплением.
- 2. Этапы построения модели машинного обучения.
- 3. Линейная регрессия. Допущения линейной регрессии.
- 4. Регуляризация. Виды регуляризации.
- 5. Метрики для оценки качества регрессии.
- 6. Градиентный спуск и его разновидности
- 7. Локальные минимумы и затухающий градиент в градиентном спуске.
- 8. Оптимизация. Метод момента и Adam.
- 9. Логистическая регрессия.
- 10. Метрики Precision, Recall, F1-score, ROC-AUC.
- 11. Алгоритм построения дерева решений.
- 12. Случайный лес (Random Forest).
- 13. Градиентный бустинг.
- 14. Метод K-Means.
- 15. Многослойный персептрон.
- 16. Сверточные нейронные сети.

Критерии оценивания:

Результаты зачета определяются оценками «зачет», «незачет»,

Оценка «зачет» выставляется, если даны правильные ответы на все вопросы билета или на один вопрос билета и два дополнительных вопроса.

Оценка «незачет» выставляется если дан неправильный ответ на один вопрос билета и два дополнительных вопроса.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тест

- 1. Какой из перечисленных алгоритмов решает задачу регрессии? (РОБК 1.2)
 - а) Линейная регрессия
 - б) K-Means
 - в) Логистическая регрессия
 - г) Random Forest Classifier
- 2. Какой из методов оптимизации используют адаптивную скорость обучения? (РОПК 2.2)
 - а) Градиентный спуск
 - б) Стохастический градиентный спуск (SGD)

- в) Adam
- г) Метод наискорейшего спуска
- 3. Что означает F1-score в задачах классификации? (РОПК 2.2)
 - а) Среднее значение Accuracy и Precision
 - б) Отношение верно предсказанных объектов к их общему количеству
 - в) Среднее гармоническое Precision и Recall
 - г) Показатель переобучения модели
- 4. Какую функцию активации чаще всего используют в скрытых слоях нейронных сетей? (РОБК 1.1)
 - a) Sigmoid
 - б) ReLU
 - в) Softmax
 - г) Линейная
- 5. В чем основная идея работы алгоритма K-Means? (РОБК 1.2)
 - а) Итеративное разделение данных на классы с использованием деревьев решений
 - б) Разделение данных на К кластеров путем минимизации внутрикластерного расстояния
 - в) Использование вероятностной модели для классификации
 - г) Разделение данных на два класса с построением гиперплоскости
- 6. Какой алгоритм ансамблевого обучения использует последовательное обучение нескольких моделей, где каждая следующая модель исправляет ошибки предыдущих? (РОПК 2.1)
 - а) Случайный лес
 - б) Градиентный бустинг
 - в) Метод главных компонент
 - г) Метод ближайших соседей (KNN)
- 7. Какой метод помогает выбрать оптимальное количество кластеров в K-Means? (РОПК 2.2)
 - a) Grid Search
 - б) ROС-кривая
 - в) Метод локтя (Elbow Method)
 - г) Backpropagation
- 8. Что делает метод Lasso-регуляризации? (РОПК 2.3)
 - а) Добавляет L1-регуляризацию, обнуляя незначимые коэффициенты
 - б) Применяет нормализацию данных перед обучением
 - в) Уменьшает размерность признакового пространства

Ключи: 1 а), 2 в), 3 в), 4 б), 5 б), 6 б), 7 в), 8 а)

Информация о разработчиках

Лапутенко Андрей Владимирович, к.т.н., кафедра информационных технологий в исследовании дискретных структур радиофизического факультета, доцент