Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Физика

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-3. Способен осуществлять научно-исследовательские и опытноконструкторские разработки как при исследовании самостоятельных тем, так и разработки по тематике организации.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-3.2. Проводит анализ научных данных, результатов экспериментов и наблюдений.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- контрольная работа;
- теоретический опрос;
- домашние задания;

Примеры задач на контрольную и домашнюю работы (ИПК-3.2):

1. Тема «Кинематика материальной точки».

Типовая задача. Ракета взлетает с поверхности Земли под углом $\theta=300~\rm k$ горизонту со скоростью $v=200\rm m/c$. Какова дальность полета ракеты? Сопротивлением воздуха пренебречь.

2. Тема «Основные законы динамики».

Типовая задача. Санки спускаются с горы высотой h=20м, имеющей уклон $\theta=450$, и проходят по горизонтальной поверхности путь S, равный 60м. Каков динамический коэффициент трения?

3. Тема « Работа и механическая энергия».

Типовая задача. Свободно падающий с некоторой высоты копер весом P=5000H забивает сваю. Скорость копра перед ударом v=12м/с. Сила сопротивления грунта F постоянна и равна $2.0\cdot106H$. Сколько ударов должен совершить копер, чтобы высота выступающей над поверхностью земли сваи уменьшилась на 50см?

4. Тема «Кинематика и динамика вращательного движения».

Типовая задача. Покоящееся ранее тело начинает вращаться вокруг своей оси с угловым ускорением $\varepsilon=3.14$ рад/с2. Найти угловую скорость ω и угол поворота ϕ через 20с с момента начала вращения.

5. Тема «Законы сохранения в механике».

Типовая задача. Человек стоит на неподвижной скамье Жуковского и держит в руках ось диска, масса которого m=2кг и радиус R=1м. Вначале колесо не вращается, а затем человек раскручивает его до угловой скорости $\omega 1=6$ об/с. При этом он сам вместе со скамьей приходит во вращение в обратном направлении с угловой скоростью $\omega 2=1$ об/с. Найти момент инерции скамьи с человеком.

6. Тема «Свободные незатухающие гармонические колебания».

Типовая задача. Написать уравнение гармонического колебательного движения, если максимальное ускорение точки amax = 49.3 см/c2, период колебаний T = 2c и смещение точки от положения равновесия в начальный момент времени x0 = 25 мм.

7. Тема «Свободные затухающие гармонические колебания».

Типовая задача. Период затухающих колебаний T=4c, логарифмический декремент затухания $\delta=1.6$, начальная фаза $\phi=0$. При t=T/4 смещение точки x=4.5см. Написать уравнение движения этого колебания.

8. Тема «Вынужденные колебания. Резонанс».

Типовая задача. Период затухающих колебаний T=4c, логарифмический декремент затухания $\delta=1.6$, начальная фаза $\phi=0$. При t=T/4 смещение точки x=4.5см. Написать уравнение движения этого колебания и резонансную частоту колебательной системы.

9. Тема «Интерференция волн. Стоячие волны».

Типовая задача. Написать уравнение движения, получающегося в результате сложения двух одинаково направленных гармонических колебательных движений с одинаковым периодом T=8c и одинаковой амплитудой A=0.02м. Разность фаз между этими колебаниями ф $2-\phi$ $1=\pi/4$.

10. Тема «Эффект Доплера».

Типовая задача. Поезд удаляется от неподвижного наблюдателя под углом $\theta 1 = 450$ к линии, соединяющей точку нахождения поезда и точку расположения наблюдателя. Скорость поезда равна V1 = 54 км/ч. Поезд дает свисток с частотой v = 550 Гц. Найти частоту v1 колебаний звука, который слышит наблюдатель. Скорость распространения звука в воздухе V = 330 м/с.

11. Тема «Идеальный газ».

Типовая задача. 10г углекислого газа CO2 занимают объем V1 = 6л и находятся при давлении $p = 0.4 \cdot 106$ Па и температуре t = 200С. После нагревания при p = const газ занял объем V2 = 12л. Найти количество теплоты Q, полученное газом. Cp = 29.1 Дж/ моль · K.

12. Тема «Первый закон термодинамики. Простейшие термодинамические процессы».

Типовая задача. При изотермическом расширении 5г углекислого газа CO2, находящегося при температуре t1 = 200C, была затрачена теплота Q = 700Дж. Во

Контрольные вопросы для проведения текущего контроля успеваемости

- 1. Что изучает физика и в чём состоит мировоззренческое значение физики?
- 2. Движение материальной точки в пространстве. Скорость и ускорение.
- 3. Динамика материальной точки и произвольной механической системы. Законы Ньютона.
- 4. Взаимосвязь работы и механической энергии. Чем потенциальная энергия отличается от кинетической энергии
 - 5. Кинематика вращательного движения.
 - 6. Динамика вращательного движения. Момент силы, момент импульса и момент?
 - 7. Основное уравнение вращательного движения.
 - 8. Какие законы сохранения рассматриваются в механике? Их характеристика.
 - 9. Свободные незатухающие гармонические колебания.
 - 10. Свободные затухающие гармонические колебания.
 - 11. Вынужденные колебания.

- 12. Что такое «резонанс».
- 13. Общая характеристика упругих волн.
- 14. Интерференция волн. Стоячие волны.
- 15. Эффект Доплера.
- 16. Что такое «идеальный газ? Уравнение состояния идеального газа.
- 17. Первый закон термодинамики. Простейшие термодинамические процессы.
- 16. Второй и третий законы термодинамики. Энтропия.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Для получения результата необходимо выполнить две контрольные работы, а также правильно ответить на не менее, чем на 2/3 от заданных вопросов.

Примерный перечень теоретических вопросов

- 1. Основные характеристики электростатического поля. Напряжённость поля и потенциал.
- 2. Теорема Остроградского-Гаусса.
- 3. Свойства проводников в электростатическом поле.
- 4. Свойства диэлектриков в электростатическом поле.
- 5. Что такое «диэлектрическая проницаемость»?
- 6. Электрическая емкость. Конденсаторы. Плоский конденсатор.
- 7. Энергия электростатического поля.
- 8. Постоянный электрический ток и его основные законы.
- 9. Действие магнитного поля на движущиеся заряды. Сила Лоренца.
- 10. Действие магнитного поля на проводники с током. Закон Ампера.
- 11. Магнитное поле постоянного электрического тока в вакууме. Закон Био-Савара-Лапласа.
 - 12. Магнитное взаимодействие токов.
 - 13. Магнитное поле в веществе. Что такое «относительная магнитная проницаемость»?
 - 14. Диа-, пара- и ферромагнетики.
 - 15. Электромагнитная индукция. Основной закон электромагнитной индукции.
 - 16. Что такое «индуктивность»?
 - 17. Уравнения электромагнитного поля.
 - 18. Материальные уравнения.
 - 19. Свойства электромагнитных волн в безграничной однородной среде.
 - 20. Опыт Майкельсона. Постулаты Эйнштейна и преобразования Лоренца.
 - 21. Относительность пространственных и временных промежутков.
 - 22. Чем релятивистская динамика отличается от классической?

Примеры задач:

1. Тема «Электростатическое поле в вакууме».

Типовая задача. Заряженный шарик, подвешенный к одноименно заряженной плоскости, отталкивается от нее, при этом нить, на которой он висит, образует с плоскостью угол α . Найти поверхностную плотность заряда σ на плоскости, если масса шарика $m=0.4\cdot10^{-4}\,\mathrm{kr}$ и его заряд $q=667\cdot10^{-12}\,\mathrm{Kn}$, а сила натяжения нити $T=0.49\cdot10^{-3}H$. Напряженность поля равномерно заряженной плоскости $E=\sigma/2\epsilon_0$.

2. Тема « Теорема Остроградского-Гаусса».

Типовая задача. Используя теорему Остроградского — Гаусса, получить выражение для напряженности электростатического поля заряженной бесконечно длинной нити как функцию расстояния r от нити. Считать заданной линейную плотность заряда на нити τ .

3. Тема «Проводники и диэлектрики в электростатическом поле».

Типовая задача. Равномерно заряженный бесконечно длинный круговой цилиндр радиуса R с поверхностной плотностью зарядов $+\sigma$ окружен соосными слоями двух разных диэлектрических сред. Наружный радиус первой среды с относительной диэлектрической проницаемостью ε_1 равен R_1 , а второй среды с проницаемостью ε_2 равен R_2 . За пределами слоя второй среды $(r > R_2)$ — воздух $(\varepsilon = 1)$. Найти электрическую индукцию и напряженность поля в каждом из диэлектрических слоев и в вакууме.

4. Тема «Электрическая емкость. Конденсаторы».

Типовая задача. Электрон движется в плоском горизонтально расположенном конденсаторе параллельно его пластинам со скоростью $V_0=3.6\cdot 10^7$ м/с. Напряженность поля внутри конденсатора $E=3.7\cdot 10^3$ В/м. Длина пластин конденсатора I=20 см. На какое расстояние S_x сместится электрон в вертикальном направлении под действием электрического поля за время его движения в конденсаторе? $m_{\text{эл}}=9.1\cdot 10^{-31}$ кг, $q_{\text{эл}}=1.6\cdot 10^{-19}$ Кл.

5. Тема «Основные законы постоянного электрического тока».

Типовая задача. В цепь, состоящую из источника ЭДС и двух одинаковых параллельно соединенных резисторов R сопротивлением 100 Ом, включают

вольтметр, сопротивление которого $R_{\nu}=700~_{\rm OM}$, один раз последовательно, другой раз параллельно. Определить внутреннее сопротивление источника ЭДС, если в обоих случаях показания вольтметра одинаковы.

6. Тема «Действие магнитного поля на движущиеся заряды».

Типовая задача. Электрон движется в однородном магнитном поле с магнитной индукцией $B = 0.2 \cdot 10^{-3}$ Тл по винтовой линии. Определить скорость V электрона, если радиус винтовой линии R = 3 см, а шаг h = 9см.

7. Тема «Действие магнитного поля на проводники с током».

Типовая задача. В однородном магнитном поле с индукцией B=0.3 Тл находится прямой проводник длиной I=20 см, по которому течет ток I=10 А. Угол α между направлением тока и вектором магнитной индукции равен 60^{0} . Определить силу F, действующую на проводник.

8. Тема «Магнитное поле постоянного электрического тока в вакууме. Закон Био-Савара-Лапласа. Магнитное взаимодействие токов».

Типовая задача. По двум бесконечно длинным прямым параллельным проводам, находящимся на расстоянии R=10 см друг от друга в вакууме, текут токи $I_1=20$ А и $I_2=30$ А одинакового направления. Определить магнитную индукцию В поля, создаваемого токами в точках, лежащих на прямой, ортогональной проводам, если: 1) точка A_1 лежит на расстоянии $r_1=2$ см левее левого провода; 2) точка A_2 лежит на

расстоянии $r_2 = 3$ см правее правого провода; 3) точка A_3 лежит на расстоянии $r_3 = 4$ см правее левого провода.

Оценки при проведении зачета формируются в соответствии с нижеприведенной таблипей.

			
2	3	4	5
Не зачтено	Зачтено	Зачтено	Зачтено
Не ответил	Ответил на один из	Ответил на оба	Уверенно и
ни на один	основных вопросов	вопроса,	правильно ответил
ИЗ	и на два из трех	содержащихся в	на все основные и
основных	дополнительных	экзаменационном	дополнительные
вопросов.	вопросов.	билете, и на	вопросы.
		дополнительные	
		вопросы, но с	
		замечаниями.	

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

- 1. Основные характеристики электростатического поля. Напряжённость поля и потенциал.
- 2. Теорема Остроградского-Гаусса.
- 3. Свойства проводников в электростатическом поле.
- 4. Свойства диэлектриков в электростатическом поле.
- 5. Что такое «диэлектрическая проницаемость»?
- 6. Электрическая емкость. Конденсаторы. Плоский конденсатор.
- 7. Энергия электростатического поля.
- 8. Постоянный электрический ток и его основные законы.
- 9. Действие магнитного поля на движущиеся заряды. Сила Лоренца.
- 10. Действие магнитного поля на проводники с током. Закон Ампера.

Информация о разработчиках

Дмитренко Анатолий Григорьевич, д.ф.-м.н, профессор, кафедра прикладной математики НИ ТГУ, профессор