Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Оценочные материалы по дисциплине

Методы неизотермической кинетики и термического анализа

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Фундаментальная и прикладная химия веществ и материалов**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОП А.С. Князев

Председатель УМК Л.Н. Мишенина

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен выполнять комплексные экспериментальные и расчетнотеоретические исследования в избранной области химии или смежных наук с использованием современных приборов, программного обеспечения и баз данных профессионального назначения.

ПК-1 Способен планировать работу и выбирать адекватные методы решения научноисследовательских и/или производственных задач в выбранной области химии, химической технологии или смежных с химией науках.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1 Приобретает систематические теоретические и практические знания в избранной области химии или смежных наук, анализирует возникающие в процессе научного исследования проблемы с точки зрения современных научных теорий, осмысливает и делает обоснованные выводы из научной и учебной литературы

ИОПК 1.2 Использует существующие и разрабатывает новые методики получения и характеризации веществ и материалов для решения задач в избранной области химии или смежных наук

ИПК 1.1 Разрабатывает стратегию научных исследований, составляет общий план и детальные планы отдельных стадий

ИПК 1.2 Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов

ИПК 1.3 Использует современное физико-химическое оборудование для получения и интерпретации достоверных результатов исследования в выбранной области химии, химической технологии или смежных с химией науках, применяя взаимодополняющие методы исследования. Проводит поиск, анализирует и обобщает результаты патентного поиска по тематике исследовательской работы

2. Оценочные материалы текущего контроля и критерии оценивания

2.1 Виды оценочных средств

No॒	Контролируемые темы/разделы	Наименование оценочного средства для текущего контроля	Код индикатора достижения компетенции согласно ОПП
1	Тема 1. Методы термического анализа	Тестирование	ИОПК 1.1.
			ИОПК 1.2.
2	Тема 2. Термогравиметрия	Практическое	ИОПК 1.1.
		задание,	ИОПК 1.2.
		индивидуальное	
		задание	
3	Тема 3. Дифференциальный термический	Практическое	ИОПК 1.1.
	анализ. Дифференциальная сканирующая	задание,	ИОПК 1.2.
	калориметрия	индивидуальное	ИПК 1.1.
		задание	
4	Тема 4. Факторы, влияющие на результаты	Практическое	ИОПК 1.1.
	термоаналитических измерений	задание	ИОПК 1.2.
			ИПК 1.1.

Тема 5. Кинетика твердофазных реакций	Практическое задание, индивидуальное	ИОПК 1.1. ИОПК 1.2. ИПК 1.1.
	задание	ИПК 1.2.
		ИПК 1.3.

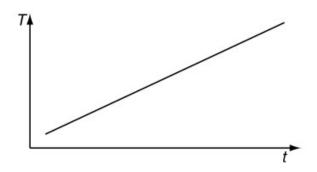
2.2 Содержание оценочных средств

Тестирование проверяет освоение ОПК-1 (ИОПК 1.1, ИОПК 1.2.)

Примеры тестовых заданий

- 1. Соотнесите процесс и тепловой эффект, сопровождающий этот процесс
 - 1) плавление

А) эндотермический


2) десорбция

Б) экзотермический

- 3) адсорбция
- 4) дегидратация
- 5) окислительная деструкция

1	2	3	4	5
A	A	Б	A	Б

- 2. Основоположником термического анализа является:
 - 1) У.Ч. Робертс-Остен
 - 2) Н.С. Курнаков
 - 3) А. А. Байков
 - 4) А.Л. Ле-Шателье
 - 5) Р. Аустен
- 3. Выберите режим программы, которому соответствует график изменения температуры

- 1) Изотермическое измерение.
- 2) Динамическое измерение при постоянной скорости нагрева.
- 3) Динамический нагрев, за которым следует охлаждение и второй сегмент нагрева.
 - 4) Изотермическая-динамическая-изотермическая температурная программа
 - 4. Для достижения максимального разрешения необходимо:
 - 1) Снизить скорость нагрева
 - 2) Увеличить скорость нагрева

- 3) Увеличить массу навески
- 4) Использовать газ с высоким коэффициентом теплопередачи
- 5) Использовать тигель из фольги с высокими теплопроводящими свойствами
- 5. Впишите нужный термин (им.п., ед.ч): измеренная кривая пустого измерительного прибора (либо без образцов и без тиглей или без образцов, с пустыми тиглями) называется нулевая линия

Критерии оценивания:

тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Практическая работа № 1

Описание термограммы термического разложения кристаллогидрата

На основании представленных результатов анализа термической деструкции кристаллогидрата

- определить условия проведения съемки на синхронном термоанализаторе
- -определить количество наблюдаемых на термограмме физико-химических превращений
 - определить энергетику процессов (экзо-, эндотермические)
- выделить процессы, идущие с изменением массы, рассчитать изменение массы на каждой ступени разложения
- составить материальный баланс процесса и записать предполагаемые реакции физико-химических превращений, используя литературные данные
 - дать рекомендации по подбору программы дополнительного анализа с целью разделения по температурному диапазону близлежащих последовательных реакций.

Практическое задание 1 формирует освоение ОПК-1 (ИОПК 1.1. ИОПК 1.2.), ПК-1 (ИПК 1.1).

Критерии оценивания:

Результатом выполнения практической работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента.

Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

Практическая работа 2

Определение условий съемки на синхронном термоанализаторе STA 449 C Jupiter для определения содержания гипса в цементе

- 1. Определить условия съемки на синхронном термоанализаторе STA 449 С Jupiter для определения содержания гипса в цементе (режим измерения, температурный интервал, скорость нагрева, атмосфера, материал тиглей).
- 2. Сформировать заявку на измерение.

Практическое задание 2 формирует освоение ОПК-1 (ИОПК 1.1. ИОПК 1.2.), ПК-1 (ИПК 1.1).

Критерии оценивания:

Результатом выполнения практической работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента. Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

Практическая работа №3

«Определение кинетических параметров разложения по данным термогравиметрии»

На основании представленных результатов анализа термической деструкции

- 1. Выбрать температурный диапазон и стадию разложения для расчета кинетических параметров (энергии активации, порядка реакции) методом Метцгера-Горовица;
- 2. Рассчитать степень превращения для выбранного температурного интервала;
- 3. С помощью стандартных программ провести линеаризацию экспериментальных данных в координатах выбранных математических уравнений зависимости степени превращения от температуры;
- 4. Определить значения величины порядка реакции и энергии активации.
- 5. Сравнить значения энергии активации с литературными данными.

Практическое задание 3 формирует освоение ОПК-1 (ИОПК 1.1, ИОПК 1.2), ПК-1 (ИПК-1.1, ИПК 1.2, ИПК 1.3).

Критерии оценивания:

Результатом выполнения лабораторной работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента.

Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет проводится по результатам выполнения и защиты индивидуального задания, проверяющего ОПК-1 (ИОПК 1.1, ИОПК 1.2), ПК-1 (ИПК-1.1, ИПК 1.2, ИПК 1.3).

Пример индивидуального задания:

Описать термограмму термического разложения MnCl₂×4H₂O и рассчитать кинетические параметры реакции дегидратации.

- 1. На основании представленных результатов термического анализа соли $MnCl_2 \times 4H_2O$ (термограмма выдается преподавателем), выполненного на синхронном термоанализаторе STA 449 C Jupiter:
 - определить условия проведения съемки на синхронном термоанализаторе
- -определить количество наблюдаемых на термограмме физико-химических превращений
 - определить энергетику процессов (экзо-, эндотермические)
- выделить процессы, идущие с изменением массы, рассчитать изменение массы на каждой ступени разложения
- составить материальный баланс процесса и записать предполагаемые реакции физико-химических превращений, используя литературные данные

- дать рекомендации по подбору программы дополнительного анализа с целью разделения по температурному диапазону близлежащих последовательных реакций.
- выбрать температурный диапазон и стадию разложения для расчета кинетических параметров (энергии активации, порядка реакции) методом Метцгера-Горовица;
- -обосновать выбор термогравиметрических, термографических данных для обработки;
 - рассчитать степень превращения для выбранного температурного интервала;
- -с помощью стандартных программ провести линеаризацию экспериментальных данных в координатах выбранных математических уравнений зависимости степени превращения от температуры;
 - определить значения величины порядка реакции и энергии активации.

Зачет получает студент, который на защите индивидуального задания показывает знание понятийного аппарата дисциплины «Термический анализ»; умение анализировать ход термоаналитических кривых; характеризует этапы термической деструкции вещества, используя справочную, учебную и научно-техническую литературу, владеет методами расчета кинетических параметров процессов. Студент может допускать некоторые неточности в расчетах или описании термограмм, которые он исправляет сразу после наводящих вопросов преподавателя.

Студент, не выполнивший индивидуальное задание, не умеющий провести сопоставительный анализ хода термоаналитических кривых (ТГ-, ДТГ-, ДТА- и ДСК-кривых) для описания процессов термической деструкции веществ и материалов не получает зачета по дисциплине.

Информация о разработчиках

Селюнина Лилия Александровна, кан. хим. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент

Рецензент:

Халипова Ольга Сергеевна, кан. техн. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент.