Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С. Н. Филимонов

Рабочая программа дисциплины

Физика плазмы

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК 2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.
- ПК 1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК 2.2 Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные выводы по результатам исследования.
- ИПК 1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.

2. Задачи освоения дисциплины

- Освоить понятийный и математический аппарат, используемый для описания движения плазмы
- Научиться применять понятийный аппарат для решения практических задач профессиональной деятельности

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 7, зачет.

Семестр 8, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины обучающимся студентам необходимы знания следующих курсов: Общая физика, Электродинамика, Обыкновенные дифференциальные уравнения.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 5 з.е., 180 часов, из которых:

- лекции: 56 ч.;
- практические занятия: 16 ч.;
 - в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Термодинамика плазмы.

Статистика заряженных частиц. Статистическая сумма и свободная энергия плазмы. Химический потенциал заряженных частиц.

Тема 2. Равновесная плазма.

Ионизация в равновесной плазме. Степень ионизации. Многократная ионизация. Дисперсная и атомная плазма. Внутренняя энергия плазмы. Поступательная, колебательная, вращательная и электронная энергия. Теплоемкость равновесной плазмы.

Тема 3. Транспортные свойства плазмы.

Теплопроводность и электропроводность плазмы. Высокочастотные свойства плазмы. Металлическая плазма.

Тема 4. Излучение плазмы.

Линейчатый и сплошной спектр. Тормозное излучение. Рекомбинационное излучение. Когерентное излучение.

Тема 5. Функция распределения и кинетическое уравнение.

Бесстолкновительная плазма. Уравнение Власова. Система уравнений для поля и частиц. Микро- и макрополе. Интеграл столкновений. Слабоионизованный газ и кулоновская плазма. Приближение времени релаксации. Уравнение Фоккера-Планка. Модельный интеграл столкновений БГК. Методы решения кинетического уравнения. Метод последовательных приближений. Процессы переноса в слабоионизованном газе.

Тема 6. Функция распределения электронов в слабоионизованном газе.

Распределение Дрювестейна. Влияние неупругих столкновений. Функция распределения электронов в переменном электрическом поле. Расчет коэффициента ионизации и коэффициентов переноса в слабоионизованной плазме. Влияние магнитного поля на функцию распределения электронов. Замагниченная плазма

Тема 7. Кулоновская плазма.

Сечение кулоновских столкновений. Приближение интеграла столкновений Ландау. Обмен энергией между электронной и ионной компонентами плазмы. Сопротивление плазмы. Спитцеровская проводимость. Убегающие электроны.

Тема 8. Гидродинамическое приближение.

Уравнение непрерывности. Уравнение Эйлера. Уравнение для потока энергии. Применимость гидродинамического приближения. Плазма как жидкость. Двухжидкостная и одножидкостная модели плазмы. Плазменное приближение. Модель идеальной жидкости.

Тема 9. Движение плазмы в магнитном поле.

Поперечный дрейф. Продольное магнитному полю движение. Диамагнитный ток и диамагнетизм плазмы. Тензор магнитных натяжений. Магнитная гидродинамика. Диффузия магнитного поля в плазме. Вмороженность линий магнитной индукции в плазму. Пересоединение магнитных линий. Турбулентное динамо.

Тема 10. Равновесные конфигурации плазмы.

Теорема о невозможности самоудержания плазмы. Уравнение Шафранова. Плазменный шнур и плазменный тор. Устойчивость границы плазмы. Поверхностные волны. Неустойчивости Релея-Тейлора. Методы стабилизации границы плазмы.

Тема 11. Диффузия полностью ионизованной плазме.

Амбиполярная диффузия. Разлет плазменного сгустка. Классическая диффузия поперек магнитного поля и диффузия Бома. Неоклассическая диффузия. Диффузия и

проводимость плазмы поперек магнитного поля. Эффект Холла. Холловский ток и холловское поле. МГД-генератор.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в седьмом семестре проводится в письменной форме по билетам. Билет содержит два теоретических вопроса. Продолжительность зачета 1,5 часа.

Экзамен в восьмом семестре проводится в письменной форме по билетам. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=21842
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Ю. П. Райзер. / Физика газового разряда // Долгопрудный: Издательский дом Интеллект, 2009.
 - И. А. Котельников. / Лекции по физике плазмы // Москва: Бином, 2014.
- В. Е. Голант, А. П. Жилинский, И. Е. Сахаров. Основы физики плазмы. М.: Атомиздат, 1977.
 - Ф. Чен. Введение в физику плазмы. М.: Мир, 1987.
 - б) дополнительная литература:
 - Д. А. Франк-Каменецкий. Лекции по физике плазмы. Любое издание.
- Л. А. Арцимович, Р. З. Сагдеев. Физика плазмы для физиков. М.: Атомиздат, 1979.
 - Б. М. Смирнов. Физика слабоионизованного газа. М.: Наука, 1978.
 - М. Митчнер, Ч. Кругер. Частично ионизованные газы. М.: Мир, 1976.
- А. Б. Михайловский. Теория плазменных неустойчивостей. Т. 1,2. М.: Атомиздат, 1977.
- В. Л. Грановский. Электрический ток в газе (установившийся ток). М.: Наука, 1971

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).

- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Семенюк Наталья Степановна, физический факультет НИ ТГУ, доцент