Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Современные проблемы биологии

по направлению подготовки

06.04.01 Биология

Направленность (профиль) подготовки: **Генетика, геномика и синтетическая биология**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема 2024

> СОГЛАСОВАНО: Руководитель ОП Г.Н. Артемов

Председатель УМК А.Л. Борисенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен использовать и применять фундаментальные биологические представления и современные методологические подходы для постановки и решения новых нестандартных задач в сфере профессиональной деятельности.
- ОПК-2 Способен творчески использовать в профессиональной деятельности знания фундаментальных и прикладных разделов дисциплин (модулей), определяющих направленность программы магистратуры.
- ОПК-8 Способен использовать современную исследовательскую аппаратуру и вычислительную технику для решения инновационных задач в профессиональной деятельности.
- ПК-1 Способен обрабатывать и использовать научную и научно-техническую информацию при решении исследовательских задач в соответствии с профилем (направленностью) магистерской программы.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1 Демонстрирует понимание основных открытий, актуальных проблем, методических основ биологии и смежных наук
- ИОПК-1.2 Анализирует современное состояние и тенденции развития биологических наук
- ИОПК-1.3 Применяет общие и специальные представления, методологическую базу биологии и смежных наук при постановке и решении новых нестандартных задач в сфере профессиональной деятельности
- ИОПК-2.1 Демонстрирует понимание фундаментальных и прикладных представлений дисциплин, определяющих направленность программы магистратуры
- ИОПК-2.2 Демонстрирует понимание методологических основ дисциплин, определяющих направленность программы магистратуры
- ИОПК-2.3 Использует фундаментальные знания, практические наработки и методический базис специальных дисциплин, определяющих направленность программы магистратуры, при планировании и реализации профессиональной деятельности
- ИОПК-8.1 Демонстрирует понимание методических принципов полевых и лабораторных биологических исследований и типов используемой современной исследовательской аппаратуры
- ИПК-1.2 Осуществляет поиск, анализ и обобщение научной и научно-технической информации при решении конкретных исследовательских задач

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- аналитическое сообщение в форме доклада с презентацией;
- развернутый доклад с презентацией по определенной тематике реферата

Аналитическое сообщение представляется в форме доклада с презентацией. Темы для подготовки аналитических сообщений (с докладом и презентацией):

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1, ИПК-1.2

- 1. Физико-генетические функции организма: для растений фотосинтез, азотофиксация и др., для животных поведение, стресс реактивность и др.
- 2. Образование белков трансляция, фолдинг, модификация. Шапероны, шаперонины.

- 3. Структура биомембран и участие в межклеточных взаимодействиях. Передача внешнего сигнала в клетку и внутриклеточные медиаторы.
- 4. Эволюция клетки. Клеточные симбионты. Хлоропласты и митохондрии как полуавтономные органоиды.
- 5. Генетика развития генетический аспект биологии развития. Проблемы генетики развития. Гены, онтогенез и эволюционное развитие. Генетика и биогенетический закон. Общие закономерности генетической регуляции индивидуального развития.
- 6. Мобильные элементы генома эукариот и прокариот. Значение мобильных элементов в эволюции генома.
- 7. Репарация генетических повреждений, дефекты репарационных систем и наследственные болезни.
- 8. Иммуногенетика (понятие об иммунитете. Некоторые отклонения в работе иммунной системы. Синдром приобретенного иммунодефицита СПИД. Моноклональные антитела. Аутоиммунные заболевания).
- 9. Онкогенетика (многостадийность опухолевой трансформации, основные этапы, понятие онкогена и протоонкогена, вирусные и клеточные онкогены, Ras-онкоген, Мус-онкоген, механизмы активации протоонкогенов, гены-супрессоры опухолеобразования, молекулярно-генетическая «хирургия» рака).
- 10. Влияние достижений геномики на развитие ключевых направлений эволюционной биологии. Пути усложнения геномов. Эволюция клеточных органелл и происхождение эукариот с позиций геномики.
- 11. Углеводы как объект биотехнологии. Гликомика. Циклодекстрины.
- 12. Инфекционные болезни как проблема биотехнологии (СПИД, туберкулез, проказа, малярия и т.д.).
- 13. Новейшие генно-инженерные вакцины. ДНК-вакцины. Терапевтические вакцины.
- 14. Современные биотехнологии и проблема биологической безопасности.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

- 15. Уровни биологического исследования от молекулярного до популяционного. Осмысление экспериментальных данных на эволюционно-популяционном уровне (молекула-клетка-организм-популяция).
- 16. Белковая инженерия. Методическое обеспечение современной белковой инженерии. Структурно-функциональные аспекты конструирования белковых молекул.
- 17. Проблемы и перспективы прикладных направлений белковой инженерии. Постгеномные технологии (протеомика, метаболономика). Структурная и функциональная протеомика. Прикладные аспекты протеомики. Внеклеточный синтез белков.
- 18. Проблемы филогении, новые подходы к систематике живых организмов. Молекулярная филогения (молекулярные часы) Реконструкция филогении таксонов различного ранга. Проблема сходства, отражающая общность происхождения. Новые методы систематики: кариосистематика, хемосистематика, геносистематика.
- 19. Понятие бесклеточной биотехнологии. Геномика, ее разделы как основа для новейших биотехнологий.

Критерии оценивания: доклады студентов оцениваются по 3-х балльной шкале, где 3 балла — развернутый доклад, проиллюстрированный схемами, рисунками, фотографиями, сделанный на основе самостоятельно подобранных информационных источников; 2 балла

– доклад, сделанный на основе предложенных информационных источников; 1 балл – краткая информационная справка.

Представляется развернутый доклад с презентацией по определенной тематике реферата.

Темы для написания рефератов (с докладом и презентацией):

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1, ИПК-1.2

- 1. Глобальные проблемы биологии XXI века.
- 2. Основные открытия во второй половине XX века.
- 3. Работы по расшифровке генома человека растений и животных.
- 4. Решение проблем продовольственного потенциала планеты, экология обитания человека, здоровье человека, энергетики на основе биотехнологии.
- 5. Доместикация диких видов растений и животных.
- 6. Управление процессом развития (дифференцировка тканей растения и систем животных).
- 7. Реорганизация сложных физиолого-генетических функций поведения, стрессоустойчивости.
- 8. Осмысление межуровневых исследований, интерпретация результатов.
- 9. Классики отечественной науки (биологии).
- 10. Антропогенное воздействие на живые системы.
- 11. Трансгенные растения и среда обитания человека.
- 12. Изменение онтогенеза растений под действием неблагоприятных факторов.
- 13. Проблемы коррекции этапов развития.
- 14. Уровни биологического исследования.
- 15. Уровни организации живых систем и живого вещества на Земле.
- 16. Современные представления о биосфере как о глобальной живой системе.
- 17. Доклеточные формы организации живого вещества.
- 18. Перспективные направления наук о биологическом многообразии.
- 19. Проблема сохранения биоразнообразия.
- 20. Эколого-физиологические проблемы адаптации к различным факторам среды обитания.
- 21. Адаптация организма к экстремальным факторам среды.
- 22. Синтез ДНК и теломераза.
- 23. Механизмы адаптации на клеточном, организменном, популяционном уровнях.
- 24. Генетический контроль некоторых аспектов поведения человека
- 25. Проблемы биологии развития.
- 26. Космическая биология и медицина.
- 27. Современные представления о происхождении и эволюции человека.
- 28. Становление эволюционного учения.
- 29. Современные популяционно-генетические тенденции в эволюции человека.
- 30. Современная биоэкология.
- 31. Проблемы экологии человека.
- 32. Современные теории биологической эволюции.
- 33. Перспективы создания общей теории жизни.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

- 34. Создание новых форм эукариотических организмов с реконструированными геномами.
- 35. Улучшение растений путём трансгенеза. Гербицидоустойчивые сорта растений.
- 36. Устойчивость растений к насекомым-вредителям.

- 37. Устойчивость растений к вирусным и бактериальным заболеваниям.
- 38. Животные доноры белков, ферментов, гормонов, антител и т. д.
- 39. Методологический аспект достижений биотехнологии.
- 40. Создание искусственных биологических систем и экологическое равновесие.
- 41. Успехи хромосомной инженерии.
- 42. Трансгенные растения как биопродуценты белков медицинского назначения.
- 43. Растения продуценты антител.
- 44. Создание новых искусственных геномов.
- 45. Методологические достижения и перспективные направления биологии развития.

Критерии оценивания: доклады студентов оцениваются по 3-х балльной шкале, где 3 балла — развернутый доклад, проиллюстрированный схемами, рисунками, фотографиями, сделанный на основе самостоятельно подобранных информационных источников; 2 балла — доклад, сделанный на основе предложенных информационных источников; 1 балл — краткая информационная справка.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация проводится в форме устного зачета по билетам в третьем семестре. Каждый экзаменационный билет содержит 2 теоретических вопроса.

Критерии оценивания:

Оценка	Критерии оценки
Не зачтено	Нет ответа даже на общие вопросы
Зачтено	Неполный ответ на все вопросы, полный развернутый или частично неполный ответ на все вопросы

Результаты текущего контроля учитываются при проведении промежуточной аттестации. Если студент посещал все лекции и семинарские занятия и подготовил не менее 2 развернутых докладов по темам курса (получил 6 баллов), то он получает зачет. В противном случае студент сдает устный зачет по билетам.

Типовые задания для проведения промежуточной аттестации по дисциплине (вопросы к зачету):

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1, ИПК-1.2

- 1. Вопрос 1. Механизмы происхождения жизни, ее изменчивости и эволюции три проблемы биологии как науки.
- 2. Вопрос 2. Представление о сущности жизни. Определения жизни как явления во Вселенной. Живые и неживые системы. Уровни организации живых систем и живого вещества на Земле.
- 3. Вопрос 3. Происхождение жизни на Земле, основные гипотезы (гипотеза сотворения, гипотеза стационарного состояния, гипотеза панспермии, гипотеза самопроизвольного зарождения, гипотеза биохимической эволюции).
- 4. Вопрос 4. Клеточная детерминация и дифференцировка у многоклеточных организмов. Соматические клетки и клетки зародышевого пути.
- 5. Вопрос 5. Хромосомный импринтинг. Диминуция хроматина. Дифференциальная активность генов.
- 6. Вопрос 6. Развитие представлений о гене. Проблемы современной генетики.
- 7. Вопрос 7. Избыточная ДНК парадокс генома эукариот (С-парадокс).
- 8. Вопрос 8. Строение и функционирование хромосом. Эпигенетика. Молекулярные механизмы эпигенетических процессов.

- 9. Вопрос 9. Генетика поведения. Генетическая детерминированность поведения дрозофилы и человека. Генетический контроль некоторых аспектов поведения у млекопитающих.
- 10. Вопрос 10. Роль горизонтальных (латеральных) переносов генов в эволюции живых организмов (информационное давление и информационный фактор эволюции. Работы В.А. Кордюма).
- 11. Вопрос 11. Структура биомембран и участие в межклеточных взаимодействиях. Передача внешнего сигнала в клетку и внутриклеточные медиаторы.
- 12. Вопрос 12. Эволюция клетки. Клеточные симбионты. Хлоропласты и митохондрии как полуавтономные органоиды.
- 13. Вопрос 13. Нерешенные проблемы СТЭ и развитие альтернативных концепций видообразования.
- 14. Вопрос 14. Генетика и эпигенетика видообразования.
- 15. Вопрос 15. Теория прерывистого равновесия и гипотезы двойственности в организации генома.
- 16. Вопрос 16. Транспозиционные взрывы и роль мобильных генетических элементов в видообразовании.
- 17. Вопрос 17. Понятие латеральной геномики и видообразование.
- 18. Вопрос 18. Видообразование на базе хромосомных перестроек. Понятие робертсоновского веера. Работы Н.Н. Воронцова.
- 19. Вопрос 19. Видообразование на основе системных мутаций. Работы В.Н. Стегния.
- 20. Вопрос 20. Архитектура интерфазного ядра генеративной ткани и гетерохроматин.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

- 21. Вопрос 21. Обзор современных методов анализа структуры и функционирования геномов.
- 22. Вопрос 22. Современные подходы к изучению эволюции живых организмов. Структура генома и неканонические формы изменчивости, их роль в эволюции живых организмов. Факультативные и облигатные компоненты генома.
- 23. Вопрос 23. ДНК как объект биотехнологии. Синтетическая биология. Практическое использование ДНК-биочипов. ДНК в бионанотехнологии.
- 24. Вопрос 24. РНК как объект биотехнологии. Рибозимы, минизимы, аптомеры нуклеиновых кислот, пептидонуклеиновые кислоты, интерференционные РНК и их практическое использование.
- 25. Вопрос 25. Белки и пептиды как объекты биотехнологии. Белковые биочипы. Интеины, шапероны, убиквитин, SUMMA-белок, прионы и их практическое использование.
- 26. Вопрос 26. Углеводы как объект биотехнологии. Гликомика. Циклодекстрины.
- 27. Вопрос 27. Понятие бесклеточной биотехнологии.
- 28. Вопрос 28. Инфекционные болезни как проблема биотехнологии (СПИД, туберкулез, проказа, малярия и т.д.).
- 29. Вопрос 29. Новейшие генно-инженерные вакцины. ДНК-вакцины. Терапевтические вакцины.
- 30. Вопрос 30. Современные биотехнологии и проблема биологической безопасности.
- 31. Вопрос 31. Работы по расшифровке генома человека, растений и животных. Создание новых искусственных геномов.
- 32. Вопрос 32. Методы и подходы хромосомной инженерии. Проблемы коррекции этапов развития.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

- 1. ПРОТЕОМИКА ХАРАКТЕРИЗУЕТ СОСТОЯНИЕ МИКРОБНОГО ПАТОГЕНА:
- а) по ферментативной активности б) по скорости роста в) по экспрессии отдельных белков г) по нахождению на конкретной стадии ростового цикла.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

2. ДЛЯ ПОЛУЧЕНИЯ ПРОТОПЛАСТОВ ИЗ КЛЕТОК ГРИБОВ ИСПОЛЬЗУЕТСЯ: а) лизоцим б) трипсин в) «улиточный фермент» г) пепсин.

ИОПК-1.1, ИОПК-1.2

3. ПРЕИМУЩЕСТВАМИ ГЕННОИНЖЕНЕРНОГО ИНСУЛИНА ЯВЛЯЮТСЯ: а) высокая активность б) меньшая аллергенность в) меньшая токсичность г) большая стабильность.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3

4. ИНЖЕНЕРНАЯ ЭНЗИМОЛОГИЯ: а) метод, основанный на выделении и культивировании тканей и клеток высших организмов б) изменение первичной структуры ДНК в конкретном ее участке, что, в конечном счете, приводит к изменению фенотипа биологического объекта, используемого в биотехнологических процессах в) метод создания рекомбинантных или гибридных ДНК г) биотехнологические процессы с использованием каталитического действия ферментов, выделенных из состава биологических систем или находящихся внутри клеток, искусственно лишенных способности расти.

ИОПК-2.2, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

5. ЗА ОБРАЗОВАНИЕМ ПРОТОПЛАСТОВ ИЗ МИКРОБНЫХ КЛЕТОК МОЖНО СЛЕДИТЬ С ПОМОЩЬЮ МЕТОДОВ: а) вискозиметрии б) колориметрии в) фазово-контрастной микроскопии г) электронной микроскопии.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.3

6. ТРЕБОВАНИЯ К ВЕКТОРАМ ДНК: а) отсутствие сайта рестрикции, в который осуществлена вставка б) большой размер в) видоспецифичность г) наличие селективных генетических маркеров для идентификации реципиентных клеток, несущих рекомбинантную ДНК.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

7. ПРЕИМУЩЕСТВА ПОЛУЧЕНИЯ ВИДОСПЕЦИФИЧЕСКИХ ДЛЯ ЧЕЛОВЕКА БЕЛКОВ ПУТЕМ МИКРОБИОЛОГИЧЕСКОГО СИНТЕЗА: a) простота оборудования б) экономичность в) отсутствие дефицитного сырья г) снятие этических проблем.

ИОПК-1.1, ИОПК-1.2, ИОПК-8.1

8. ПОНЯТИЕ «ЛИПКИЕ КОНЦЫ» ПРИМЕНИТЕЛЬНО К ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ ОТРАЖАЕТ: а) комплементарность нуклеотидных последовательностей б) взаимодействие нуклеиновых кислот и гистонов в) реагирование друг с другом SH-групп с образованием дисульфидных связей г) гидрофобное взаимодействие липидов.

ИОПК-1.3, ИОПК-2.3, ИОПК-8.1, ИПК-1.2

9. В КАЧЕСТВЕ ОСНОВНОГО МЕТОДА ПРОТЕОМИКИ ИСПОЛЬЗУЮТ: а) микроскопию б) газожидкостную хроматографию в) двухмерный электрофорез г) радиоизотопный.

ИОПК-1.2, ИОПК-2.1, ИОПК-8.1, ИПК-1.2

10. ПРОЦЕСС ИЗГОТОВЛЕНИЯ ГЕННОИНЖЕНЕРНЫХ ПРЕПАРАТОВ ВКЛЮЧАЕТ: а) копирование гена человека, ответственного за синтез необходимого продукта б) модификацию генетического аппарата больного для увеличения биосинтеза необходимых продуктов в) внедрение микробной клетки с рекомбинантной ДНК в организм человека г) культивирование и выделение микробных клеток с рекомбинантными ДНК.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.2, ИОПК-2.3

11. ОТБОР ТРАНСФОРМИРОВАННЫХ КЛЕТОК, СОДЕРЖАЩИХ РЕКОМБИНАНТНУЮ ДНК (ГИБРИДНУЮ ПЛАЗМИДУ) ПРОВОДЯТ: а) тестированием на резистентность к различной температуре б) тестированием на резистентность к определенным антибиотикам в) по способности окрашиваться гематоксилином г) по морфологическим признакам.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

12. ПЛАЗМИДА — ЭТО ...: а) определенный штамм кишечной палочки, используемый для биотехнологических целей б) кольцеобразную молекулу ДНК - внехромосомный элемент генетической информации в) участок цепи РНК, несущий информацию о структуре гена г) вирус, размножающийся в цитоплазме микробной клетки д) хромосому, используемую в качестве вектора для введения ДНК в клетки бактерий.

Ключи: 1в), 2а), 3б), 4г), 5в), 6г), 7г), 8а), 9в), 10г), 11б), 12б)

ИОПК-1.1, ИОПК-1.2, ИОПК-8.1, ИПК-1.2

13. Вопрос: объединение геномов клеток разных видов и родов возможно при соматической гибридизации...

Ответ: только в искусственных условиях.

ИОПК-1.2, ИОПК-2.2, ИОПК-2.3

14. Вопрос: при NGS секвенировании по технологии Illumina используется...

Ответ: стыковочная (мостиковая) амплификация.

ИОПК-8.1, ИПК-1.2

15. Вопрос: при полимеразной цепной реакции количество ДНК от цикла к циклу увеличивается...

Ответ: в геометрической прогрессии.

ИОПК-1.2, ИОПК-2.3

16. Вопрос: первое поколение секвенирования включает...

Ответ: метод Максама-Гилберта, метод Сэнгера.

ИОПК-1.1, ИОПК-1.2

17. Вопрос: инсерция участка ДНК...

Ответ: вставка фрагмента ДНК в геном.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

18. Вопрос: Репликация РНК осуществляется...

Ответ: у ретровирусов. ИОПК-2.2, ИОПК-2.3

19. Вопрос: векторные молекулы должны...

Ответ: иметь селективные маркеры.

ИОПК-1.2, ИОПК-2.1

20. Вопрос: методику переноса ДНК на нитроцеллюлозный фильтр разработал...

Ответ: Саузерн.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

21. Вопрос: форма сплайсинга, при которой соединяются РНК разных транскриптов...

Ответ: Транс сплайсинг.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

22. Вопрос: тандемные повторы с размером повторяющегося элемента от нескольких сотен до нескольких тысяч пар нуклеотидов называются...

Ответ: сателлиты.

ИОПК-1.1, ИОПК-1.2, ИОПК-2.1

23. Вопрос: процесс удвоения ДНК называется...

Ответ: репликация.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3

24. Вопрос: методы, позволяющие оценить экспрессию белка...

Ответ: вестерн-блоттинг, иммуногистохимический анализ.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3

25. Задача: нуклеотиды в одном из генов располагаются в следующей последовательности: АААГААЦАЦ. Как изменится последовательность аминокислот в полипептидной цепочке, кодируемой данным участком гена, если во всех кодонах заменить первые нуклеотиды: в первом кодоне A на Γ , во втором – Γ на A, в третьем – Ц на Γ ?

Ответ: пользуясь таблицей генетического кода, определим последовательность аминокислот в полипептиде, которая кодируется исходными кодонами: исходные кодоны: ААА ГАА ЦАЦ исходные аминокислоты: ФЕН – ЛЕЙ – ВАЛ. Затем запишем последовательность новых кодонов и новых аминокислот: новые кодоны: ГАА ААА ТАЦ исходные аминокислоты: ЛЕЙ – ФЕН – МЕТ следовательно, замена первого нуклеотида в каждом кодоне изменяет их смысловую функцию – образуется другой белок, что ведет к новым признакам у организма.

ИОПК-1.3, ИОПК-2.2, ИОПК-2.3

26. Задача: исследования показали, что нуклеотидный состав мРНК следующий: 30% приходится на гуанин, 10% — на цитозин, 16% — на аденин и 44% — на урацил. Определите процентный состав по нуклеотидам той части ДНК, слепком которой является изученная мРНК.

Ответ: если в иРНК процентный состав нуклеотидов: Γ – 30%, Π – 10%, Π – 16%, Π – 44%, то в ДНК он представлен следующим образом: Π и Π – по 20%, Π и Π – по 30%.

ИОПК-2.3, ИОПК-8.1, ИПК-1.2

27. Задача: известно, что расстояние между нуклеотидами в цепочках ДНК составляет 34×10^{-11} м. Какую длину имеет ген, определяющий белок, состоящий из 134 аминокислот?

Ответ: длина данного гена равняется $\approx 1,36 \times 10^{-7}$ м.

ИОПК-2.3, ИОПК-8.1, ИПК-1.2

28. Задача: известно, что расстояние между нуклеотидами в цепочках ДНК составляет 34×10^{-11} м. Какую длину имеет ген, определяющий гемоглобин, включающий 287 аминокислот?

Ответ: Если в молекуле гемоглобина 287 аминокислот, то длина цистрона, кодирующего гемоглобин, составляет $(861-1) \times 34 \times 10^{-11}$ м.

Информация о разработчиках

Усов Константин Евгеньевич, кандидат биологических наук, кафедра генетики и клеточной биологии БИ ТГУ, доцент.