Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

Фонд оценочных средств

Анализ реальных объектов

по направлению подготовки

04.03.01 Химия

Направленность (профиль) подготовки: «Химия»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема 2022

Код дисциплины в учебном плане: Б1.В.ДВ.02.01.04

СОГЛАСОВАНО:

Руководитель ОП

В.В. Шелковников

Председатель УМК

Л.Н. Мишенина

Томск - 2022

1 Паспорт фонда оценочных средств

Направление подготовки	04.03.01 Химия	
Дисциплина	Анализ реальных объектов	
Семестр обучения	8	
Общий объем дисциплины, ЗЕ	4	
Формы текущего контроля	контрольная работа/коллоквиум/ /4	
	индивидуальных задания/тест,	
	комплексная лабораторная работа.	
Форма промежуточной аттестации	зачет с оценкой	

Оценивание результатов учебной деятельности обучающихся при изучении дисциплины осуществляется по текущему контролю и промежуточной аттестации

2 Перечень формируемых компетенций и уровни их освоения

Изучение дисциплины «Анализ реальных объектов» направлено на формирование следующих компетенций:

Коды и	Индикаторы		
содержание	достижения	Перечень планируемых результатов обучения	
компетенций по	компетенций	по дисциплине	
СУОС	согласно ООП	по дисциплине	
ОПК-1. Способен	ИОПК-1.1.	Допороговый	Не способен анализировать
анализировать и	Систематизирует и	уровень	и интерпретировать
интерпретировать	анализирует	ypootiio	результаты химических
результаты	результаты		экспериментов,
химических	химических		наблюдений и измерений,
экспериментов,	экспериментов,		формулировать заключения
наблюдений и	наблюдений,		и выводы.
измерений.	измерений, а	Пороговый	Способен анализировать и
измерении.	также результаты	уровень	предложить интерпретацию
	расчетов свойств	уровено	результаты химических
	веществ и		экспериментов,
	материалов.		наблюдений и измерений,
	ИОПК-1.2.		но затрудняется
	Предлагает		формулировать заключения
	интерпретацию		1 1 7 1
	результатов	По от от от от от	и выводы.
	собственных	Достаточный	Способен анализировать и
		уровень	интерпретировать
	экспериментов и		результаты собственных
	расчетно-		химических
	теоретических		экспериментов и расчетно-
	работ с		теоретических работ с
	использованием		использованием
	теоретических		теоретических основ
	основ		традиционных и новых
	традиционных и		разделов химии, но
	новых разделов		затрудняется
	ХИМИИ.		самостоятельно
	ИОПК-1.3.		формулировать заключения
	Формулирует		и выводы.
	заключения и	Продвинутый	Способен анализировать и
	выводы по	уровень	интерпретировать

	1		
	результатам		результаты собственных
	анализа		химических
	литературных		экспериментов и расчетно-
	данных,		теоретических работ с
	собственных		использованием
	экспериментальны		теоретических основ
	х и расчетно-		традиционных и новых
	теоретических		разделов химии,
	работ химической		самостоятельно
	направленности.		формулировать заключения
			и выводы.
ОПК-2. Способен	ИОПК-2.1.	Допороговый	Не способен работать с
проводить с	Работает с	уровень	химическими веществами с
соблюдением норм	химическими		соблюдением норм техники
техники	веществами с		безопасности.
безопасности	соблюдением норм	Пороговый	Способен работать с
химический	техники	уровень	химическими веществами с
эксперимент,	безопасности.		соблюдением норм техники
включая синтез,			безопасности, но в ряде
анализ, изучение			случаев допускает ошибки.
структуры и		Достаточный	Способен работать с
свойств веществ и		уровень	химическими веществами с
материалов,			соблюдением норм техники
исследование			безопасности, в редких
процессов с их			случаях допускает ошибки.
участием.		Продвинутый	Способен работать с
		уровень	химическими веществами с
) F · · · · · ·	соблюдением норм техники
			безопасности, практически
			не допускает ошибок.
ПК-1. Способен	ИПК-1.1.	Допороговый	Не способен выбирать и
выбирать и	Планирует	уровень	использовать технические
использовать	отдельные стадии	уровено	средства и методы
технические	исследования при		испытаний для решения
средства и методы	наличии общего		поставленных задач,
испытаний для	плана НИР.		готовить объекты
решения	IIII IIII .		исследования.
исследовательских	ИПК-1.2. Готовит	Пороговый	Затрудняется
задач химической	элементы	уровень	самостоятельно выбирать и
направленности,	документации,	уровено	использовать технические
поставленных	проекты планов и		средства и методы
специалистом	проскты планов и		испытаний для решения
более высокой	отдельных этапов		поставленных задач,
квалификации.	НИР.		готовить объекты
кралификации.	111111.		исследования.
	ИПК-1.3.	Постаточный	1
	Выбирает	Достаточный	Способен выбирать и
	технические	уровень	использовать технические
	средства и методы		средства и методы
	испытаний (из		испытаний для решения
	`		поставленных задач, но
	набора		требуется консультация

I	имеющихся) для		преподавателя, готовить
	решения		объекты исследования.
I	поставленных	Продвинутый	Не способен выбирать и
3	задач НИР.	уровень	использовать технические
			средства и методы
	ИПК-1.4. Готовит		испытаний для решения
	объекты		поставленных задач,
I	исследования.		готовить объекты
			исследования.

Уровни и шкала оценивания сформированности компетенций

Допороговый уровень	Соответствует оценке «неудовлетворительно», предполагает несформированность компетенций на достаточном уровне. Студент имеет пробелы по отдельным теоретическим разделам и не владеет основными умениями и навыками.
Пороговый уровень	Соответствует оценке «удовлетворительно», предполагает сформированность компетенций на достаточном уровне. Студент имеет недостаточно глубокие знания по отдельным теоретическим разделам, показал не все основные умения и навыки.
Достаточный уровень	Соответствует оценке «хорошо», предполагает сформированность компетенций на достаточно хорошем уровне. Студент изучил все теоретические вопросы, показал основные умения и навыки.
Продвинутый уровень	Соответствует оценке «отлично», предполагает сформированность компетенций на высоком уровне. Студент показал творческое отношение к обучению, в совершенстве овладел всеми теоретическими вопросами дисциплины, показал все требуемые умения и навыки.

2 Этапы формирования компетенций и оценочные средства (текущая аттестация)

2.1 Виды оценочных средств

No	Контролируемые темы/разделы	Наименование оценочного средства для текущего контроля	Код индикатора достижения компетенции согласно ОПП
1	Тема 1. Аналитический цикл и его		ИОПК 1.1.
	основные этапы.	Коллоквиум,	ИОПК 1.2.
2	Тема 2. Анализ геологических объектов.,	контрольная работа	ИОПК 1.3.
	черных металлов и сплавов	Устный опрос	ИПК 1.3.
3	Тема 3. Анализ цветных и редких	Индивидуальное	ИОПК 1.3.
	металлов и сплавов.	задание	ИПК 1.3.
		Устный опрос	
4	Тема 4. Анализ вод.	Индивидуальное	ИПК 1.3.
		задание	
		Лабораторная работа	ИОПК 2.1.
		Устный опрос	ИПК 1.4.
5	Тема 5. Анализ воздуха.	Т –	ИОПК 1.3.
	•	Тест	ИПК 1.3.
6	Тема 6. Анализ почв и донных отложений.	Индивидуальное	ИОПК 1.3.
		задание	ИПК 1.3.
7	Тема 7. Анализ веществ высокой чистоты.	Устный опрос	ИОПК 1.3.
		_	ИПК 1.3.

2.2 Содержание оценочных средств

Примеры вопросов для устного опроса:

- 1. Анализ. Выбор схемы и метода анализа. Основные его стадии.
- 2. Представительность пробы. Виды проб, размер. Факторы, учитываемые при отборе проб.
- 3. Техника отбора проб газов, жидкостей и твердых веществ.
- 4. Стадии получения аналитической пробы из генеральной для твердых веществ.
- 5. Вода в пробах. Удаление влаги из образца. Методы определения в пробах воды.
- 6. Способы разложения пробы. Факторы, влияющие на выбор способа разложения.
- 7. «Мокрый» способ разложения. Выбор растворителя. Погрешности.
- 8. «Сухое» разложение: термическое разложение, сплавление, спекание.
- 9. Маскирование как способ устранения влияния мешающих компонентов.
- 10. Количественные характеристики методов разделения и концентрирования.
- 11. Охарактеризуйте основные методы разделения и концентрирования, основанные на образовании новой фазы (Осаждение, электроосаждение, вымораживание, испарение, селективное растворение).
- 12. Назовите методы разделения и концентрирования, основанные на различиях в распределении вещества между фазами. Охарактеризуйте один из них.
- 13. Экстракция. Основные понятия. Типы экстракций. Количественные характеристики.
- 14. Минералы, горные породы, вмещающие породы, руды. Типы минералов. Сырье для получения различных металлов.
- 15. Классификация металлов. Области их применения.

- 16. Сплавы, их физические признаки. Классификация сплавов.
- 17. Железные сплавы, их состав.
- 18. Получение железных сплавов с особыми свойствами.
- 19. Легирующие элементы сталей, их состояние в сплаве и роль.
- 20. Твердые сплавы, их виды, области применения.

Примеры билетов для контрольной работы.

Контрольная работа. Вариант 1.

- 1. В 6 мерных колб вместимостью 100,0 см ³ поместили 1,00; 2,00; 3,00; 4,00; 5,00; и 6,00 см³ стандартного раствора Fe³⁺ с концентрацией 10,0 мг/см³. После проведения реакции с сульфосалициловой кислотой измерили оптические плотности растворов, которые соответственно равны: 0,12; 0,25; 0,37; 0,50; 0,62 и 0,75. Оптическая плотность анализируемого раствора кислотной вытяжки почвы с сульфосалициловой кислотой составила 0,30. Определите содержание подвижных форм Fe³⁺ в почве (г/кг), если для приготовления вытяжки была взята почва массой 5,0000 г, а объем вытяжки составил 25 см ³.
- 2. В 100,0 см³ раствора содержится 0,0206 г пикриновой кислоты (NO₂)₃C₆H₂OH. В этом растворе создали рН 1 добавкой HCl и проэкстрагировали пикриновую кислоту 2,00 см³ этилбензола. После достижения межфазного равновесия концентрация пикриновой кислоты в водном растворе составила 6,14⋅10⁻⁴ моль/дм³. Вычислите коэффициент распределения пикриновой кислоты между этилбензолом и водой.

Контрольная работа. Вариант 2.

- 1. При спектрофотометрическом определении Fe^{3+} в белом вине методом добавок по реакции с тиоцианатом аммония в 2 мерные колбы вместимостью 50,0 см 3 отобрали по 20,0 см 3 анализируемого вина. В одну из колб прибавили 1,00 см 3 раствора, содержащего 0,0030 г Fe^{3+} , в обе колбы добавили раствор MH_4SCN и довели до метки дистиллированной водой. Оптические плотности растворов: $A_x = 0,15$ (при отсутствии добавки), $A_x+_{cr.} = 0,48$ (в присутствии добавки Fe^{3+}). Вычислите массовую концентрацию Fe^{3+} в вине (г/мл). Основной закон светопоглощения $A = \varepsilon \cdot c \cdot l$.
- 2. Коэффициент распределения бензойной кислоты C_6H_5COOH между октиловым спиртом и водой D=65,0. Рассчитайте степень извлечения бензойной кислоты при соотношении объемов водной и органической фаз 10:2.

Контрольная работа. Вариант 3.

1. В 4 мерные колбы вместимостью 100,0 см³ поместили 2,00; 4,00; 8,00 и 12,00 см³ стандартного раствора сульфата натрия с концентрацией 0,02 мг/см³. В каждую колбу добавили по 10 см³ раствора электролита (смесь NaC1 и HC1), разбавили дистиллированной водой до 20 см³ и добавили по 3 см³ раствора желатина. После перемешивания ввели по 7,0 см³ раствора хлорида бария с массовой долей 10,0 %, добавили дистиллированную воду до метки, выдержали 5 мин. Измерили оптические плотности полученных суспензий:

$v(Na_2SO_4)$, см ³	2,00	4,00	8,00	12,00
A	0,071	0,133	0,277	0,367

К 20,0 см³ минеральной воды добавили растворы желатина и хлорида бария, разбавили дистиллированной водой до метки в мерной колбе вместимостью 100,0 см³. Оптическая плотность суспензии равна 0,207. Вычислите массовую концентрацию сульфатов в анализируемой минеральной воде.

Коэффициенты распределения о-ванилина (2-гидрокси-3-метоксибензальдегид) и метанола между циклогексаном и водой равны 9.30 и $1.60\cdot10^{-3}$, соответственно.

Вычислить фактор разделения о-ванилина и метанола. Возможно ли разделение этих веществ при экстракции циклогексаном (проверьте выполнение двух условий)?

Примеры билетов для коллоквиума.

Билет 1.

- 1. Для анализа воды в р. Томь необходимо провести отбор проб. Укажите особенности отбора жидких проб и источники погрешностей на этой стадии.
- 2. Для определения постоянной примеси в железном сплаве (Р) необходимо перевести его в раствор. Какой из способов (кислотное, термическое разложение, сплавление, спекание) более предпочтителен? Какие источники погрешностей могут при этом возникнуть?
- 3. Водная вытяжка из почв, как ее приготовить? Приведите схему анализа водной вытяжки на содержание Cl^- , NO_3^- , SO_4^{2-} , Na^+ , K^+ . Охарактеризуйте сущность методов их определения.

Билет 2

- 1. Для анализа железной руды на содержание целевого компонента необходимо провести отбор генеральной пробы. Методика отбора проб неоднородных материалов. От чего зависит масса первичной пробы?
- 2. Перечислите методы концентрирования, которые целесообразно использовать при определении низких концентраций токсичных металлов в природных водах методом молекулярной абсорбционной спектрофотометрии. В чем заключается сущность этих метолов?
- 3. Приведите схему анализа силикатных минералов. Какие методы разделения в ней используются? Приведите химические реакции разделения и определения основных компонентов проб.

Билет 3

- 1. «Сухой» способ разложения пробы (термическое разложение, сплавление, спекание). В чем его сущность. Для каких образцов его используют. Источники погрешностей при его реализации.
- 2. Назовите методы разделения, основанные на различиях в распределении веществ между фазами. Какие общие закономерности, лежат в основе методов этой группы?
- 3. Для определения процентного содержания кальция в известняке навеску минерала растворяют в минимальном количестве кислоты, кальций осаждают в виде оксалата, осадок отделяют и растворяют в серной кислоте, после чего титруют полученный раствор перманганатом калия с известной концентрацией. Напишите уравнения реакций всех стадий анализа, приведите расчетную формулу.

Билет 4

- 1. Какое значение имеет операция отбора пробы при анализе реального объекта? Какими способами обеспечивается ее представительность в зависимости от природы и масштаба объекта?
- 2. Что такое маскирование? Приведите примеры маскирования (уравнения реакций, тип аналитического сигнала).
- 3. Как выражаются количественные характеристики процесса экстракции: константа распределения, коэффициент распределения, фактор (степень) извлечения при п-кратной экстракции, коэффициент разделения, фактор обогащения? Как они связаны между собой?

Примеры индивидуальных заданий по теме «Анализ цветных металлов и сплавов»

1. Производство меди и медных сплавов. Определение примесей, влияющих на электропроводность (As, Sb, Fe, Ni) и примесей, ухудшающих прокатные свойства (Ві и Рb) меди и медных сплавов.

- 2. Латуни сплавы на основе меди. Виды латуней, их применение. Легированные латуни. Маркировка латуней. Определение в них цинка и легирующих элементов.
- 3. Бронзы. Оловянные бронзы. Другие виды бронз. Их маркировка. Анализ легирующих элементов.
- 4. Алюминий, нахождение в природе, сырье и основные способы его получения. Алюминиевые сплавы, маркировка, легирующие элементы, аналитический контроль.
- 5. Магний. Его получение. Сплавы на основе магния. Легирующие элементы, их аналитический контроль.
- 6. Жаропрочные сплавы на основе титана. Их применение. Промышленный способ производства титана. Влияние примесей на механические свойства титана. Легирующие элементы.
- 7. Антифрикционные сплавы. Их состав, назначение, легирующие элементы. Аналитический контроль.

Примеры индивидуальных заданий по теме «Анализ вод»

- 1. Классификация вод. Основные аналитические проблемы. Пробоотбор, консервация и хранение проб. Важнейшие свойства вод, определяемые наличием растворенных веществ: плотность, электропроводность, температура замерзания и наибольшей плотности.
- 2. Определение обобщенных физико-химических показателей, определяющих качество воды: прозрачности, мутности, цветности, водородного показателя, окислительно-восстановительного потенциала. Определение обобщенных химических показателей, определяющих качество воды: щелочности, растворенного кислорода, окисляемости, химического и биохимического потребления кислорода (ХПК и БПК). Биотестирование как способ оценки качества вод.
- 3. Определение индивидуальных неорганических компонентов вод:
 - Хлоридов, фторидов, нитритов, нитратов, фосфатов.
 - Серосодержащих анионов, ионов аммония, щелочных и щелочноземельных металлов.
- —Определение жесткости воды, свободного хлора. Формы существования тяжелых металлов и радионуклидов в водах. Способы их концентрирования и определения.
- 4. Природные органические вещества вод. Общая оценка их содержания: определение органического углерода, азота, фосфора. Основные классы загрязняющих органических веществ. Источники попадания, устойчивость в окружающей среде, токсичность, методы извлечения, концентрирования, разделения и определения:
 - поверхностно-активные вещества, фенолы, нефтепродукты;
 - полиароматические углеводороды; азот-, серо- и фосфорсодержащие пестициды;
- хлорорганические соединения (хлорсодержащие пестициды, полихлорированные бифенилы, полихлордибензофураны, полихлордибензо-п-диоксины).

Примеры тестовых заданий по теме «Анализ воздуха»

Категория «Состав атмосферы»

Какое значение с точки зрения состава имеют границы между разными областями атмосферы

Не имеют никакого значения

Перемешивание атмосферы через эти границы происходит очень быстро

<u>Перемешивание атмосферы через эти границы происходит очень</u> медленно

Категория «Загрязнители атмосферы»

Пероксиацетилнитраты (ПАН) и родственные им соединения в атмосфере являются Основными (критериальными) загрязнителями <u>Вторичными загрязнителями</u> Фотооксидантами

Родоначальниками смога

Постоянными газами

Категория «Агрегатное состояние загрязнителей»

Укажите соответствие между загрязняющим веществом и его агрегатным состоянием:

Антрацен (аэрозольные частицы)

Полихлорированные бифенилы (пар + аэрозольные частицы)

Иод (твердое вещество)

Озон (газ)

Категория «Отбор проб воздуха»

Требования, которым должен удовлетворять метод аналитического контроля при анализе атмосферного воздуха:

 $\Pi O = 0.8 \Pi \Pi K_{MP}, S_r \le 25\%$ на уровне $\Pi \Pi K$

 $\Pi O = 0.5 \; \Pi \coprod K_{MP}, \; S_r \leq 25\% \; на \; уровне \; \Pi \coprod K$

 $\Pi O = 0.8$ ПДК_{мр}, $S_r \le 50\%$ на уровне ПДК

 $\Pi O = \Pi \coprod K_{Mp}, S_r \le 25\%$ на уровне $\Pi \coprod K$

Категория «Отбор проб в замкнутые емкости и поглотительные среды» Если примеси газообразные или парообразные, то отбор проб осуществляют:

в жидкие поглотительные среды

на твердые сорбенты

на различные фильтрующие материалы

Категория «Адсорбция на твердых сорбентах»

К какому типу сорбентов можно отнести стеклянную крошку, обработанную раствором реагента (например, H₂SO₄) в смеси с глицерином?

Пленочные

Пористые

Непористые

Категория «Улавливание аэрозольных частиц»

Механизм инерционного осаждения аэрозолей на фильтрах наиболее вероятен:

Для больших плотных частиц

Для частиц малого размера

При высоких скоростях воздушного потока

При малых скоростях воздушного потока

Содержание лабораторной работы по теме «Анализ высокоминерализованной воды»

- 1. Определение натрия, калия методом эмиссионной фотометрии пламени.
- 2. Определение общего содержания Zn методом пламенной атомно-абсорбционной спектрометрии.
- 3. Комплексонометрическое определение жесткости.
- 4. Определение хлорид-ионов методом Мора (аргентометрическое титрование с K_2CrO_4).
- 5. Определение PO₄³--методом спектрофотометрии.
- 6. Определение SO_4^{2-} -иона турбидиметрическим методом.

Оценочные материалы в полном объеме содержатся в архивных материалах кафедры аналитической химии и в электронной образовательной среде

2.3 Методические рекомендации

2.3.1 Порядок проведения текущего контроля

Текущий контроль осуществляется на протяжении периода обучения по дисциплине в рамках организации и проведения лекционных занятий, лабораторных работ, самостоятельной работы студентов путём контроля выполнения теоретических и расчётных заданий, сдачи коллоквиума по лекционному материалу и основным расчётам результатов анализа с учетом пробоподготовки.

2.3.2 Шкала оценивания по видам оценочных средств

No	Виды оценочных средств	Количество баллов
1	Коллоквиум	50
2	Контрольная	50
3	ИЗ Анализ цветных и редких металлов и сплавов	100
4	ИЗ Анализ вод	100
5	ИЗ Анализ почв и донных отложений	100
6	ИЗ Анализ веществ высокой чистоты	100
7	Тест Анализ воздуха	100
8	Лабораторная работа Анализ реального объекта	50

Итоговая оценка учитывает результаты рейтинга семестра: суммарный рейтинг курса – 650 баллов.

Соответствие баллов зачету с оценкой:

521-650 баллов - «отлично» (80%)

421-520 баллов - «хорошо» (65%)

325–420 баллов – «удовлетворительно» (50%)

Оценочные материалы в полном объеме содержатся в архивных материалах кафедры аналитической химии и в электронной образовательной среде