Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

Фонд оценочных средств

Строение вещества

по специальности

04.05.01 Фундаментальная и прикладная химия

Специализация: «Фундаментальная и прикладная химия»

Форма обучения **Очная**

Квалификация **Химик. Преподаватель химии**

Год приема **2021**

Код дисциплины в учебном плане: Б1.О.1.17

СОГЛАСОВАНО:

Руководитель ОП

В.В. Шелковников

Председатель УМК

Дения Л.Н. Мишенина

Томск – 2022

1 Паспорт фонда оценочных средств

Направление подготовки	04.05.01 Фундаментальная и прикладная	
	химих	
Дисциплина	Б1.О.1.17 Строение вещества	
Семестр обучения	6	
Общий объем дисциплины, ЗЕ	5	
Формы текущего контроля	контрольная работа, домашние работы,	
	посещаемость	
Форма промежуточной аттестации	экзамен	

Оценивание результатов учебной деятельности обучающихся при изучении дисциплины осуществляется по текущему контролю и промежуточной аттестации

2 Перечень формируемых компетенций и уровни их освоения

Изучение дисциплины «Строение вещества» направлено на формирование следующих компетенций:

Коды и	Индикаторы		
содержание	достижения	Перечень планируемых результатов обучения	
компетенций по	компетенций	по дисциплине	
СУОС	согласно ООП		
ОПК-1. Способен	ИОПК-1.1.	Допороговый	Соответствует оценке
анализировать,	Систематизирует и		
интерпретировать	анализирует	предполагает	
и обобщать	результаты		несформированность
результаты	химических		компетенций на
экспериментальны	экспериментов,		достаточном уровне.
х и расчетно-	наблюдений,		Студент имеет пробелы по
теоретических	измерений, а		отдельным теоретическим
работ химической	также результаты		разделам и не способен
направленности.	расчетов свойств		интерпретировать
	веществ и		результаты химических
	материалов.	экспериментов,	
	ИОПК-1.2.	наблюдений и измерений.	
	Предлагает	Пороговый Соответствует оценке	
	интерпретацию	<i>уровень</i> «удовлетворительно»,	
	результатов	предполагает	
	собственных		сформированность
	экспериментов и	компетенций на	
	расчетно-	достаточном уровне.	
	теоретических		Студент имеет
	работ с	недостаточно глубокие	
	использованием		знания по отдельным
	теоретических		теоретическим разделам, но
	основ		способен анализировать
	традиционных и		результаты химических
	новых разделов		экспериментов,
	химии.		наблюдений, измерений, а
	ИОПК-1.3.		также результаты расчетов
	Формулирует		свойств веществ и

	заключения и		материалов на базовом
			_
	выводы по	7	уровне.
	результатам	Достаточный	Соответствует оценке
	анализа	уровень	«хорошо»,
	литературных		предполагает
	данных,		сформированность
	собственных		компетенций на достаточно
	экспериментальны		хорошем уровне. Студент
	х и расчетно-		систематизирует и
	теоретических		анализирует результаты
	работ химической		химических экспериментов,
	направленности.		наблюдений, измерений,
			Предлагает интерпретацию
			результатов собственных
			экспериментов и расчетно-
			теоретических работ.
		Продвинутый	Соответствует оценке
		уровень	«отлично»,
		уровено	предполагает
			-
			сформированность компетенций на высоком
			уровне. Студент показал
			творческое отношение к
			обучению, в совершенстве
			овладел всеми
			теоретическими вопросами
			дисциплины,
			систематизирует и
			анализирует результаты
			химических экспериментов,
			наблюдений, измерений,
			Предлагает интерпретацию
			результатов собственных
			экспериментов и расчетно-
			теоретических работ,
			способен к
			формулированию
			заключения или выводов по
			результатам анализа.
ОПК-4. Способен	ИОПК-4.1.	Допороговый	Соответствует оценке
	Использует	•	«неудовлетворительно»,
планировать	базовые знания в	уровень	
работы химической	области		предполагает
			несформированность
направленности,	математики и		компетенций на
обрабатывать и	физики при		достаточном уровне.
интерпретировать	планировании		Студент имеет пробелы по
полученные	работ химической		отдельным теоретическим
результаты с	направленности;		разделам и не способен
использованием			планировать работы
теоретических	ИОПК-4.2.		химической
знаний и	Обрабатывает		направленности,
практических	данные с		обрабатывать и

	T		
навыков решения	использованием		интерпретировать
математических и	стандартных	полученные результаты.	
физических задач.	способов	Пороговый	Соответствует оценке
	аппроксимации	уровень	«удовлетворительно»,
	численных		предполагает
	характеристик;		сформированность
	нопи из		компетенций на
	ИОПК-4.3.		достаточном уровне.
	Интерпретирует		Студент имеет
	результаты		недостаточно глубокие
	химических		знания по отдельным
	наблюдений с		теоретическим разделам, но
	использованием		способен анализировать
	физических		планировать работы
	законов и		химической
	представлений.		направленности,
			обрабатывать и
			интерпретировать
			полученные результаты на
			базовом уровне.
		Достаточный	Соответствует оценке
		уровень	«хорошо»,
			предполагает
			сформированность
			компетенций на достаточно
			хорошем уровне. Студент
			использует базовые знания
			из других областей
			(математика, физика) для
			обработки и интерпретации
			данных.
		Продвинутый	Соответствует оценке
		уровень	«отлично»,
			предполагает
			сформированность
			компетенций на высоком
			уровне. Студент показал
			творческое отношение к
			обучению, в совершенстве
			овладел всеми
			теоретическими вопросами
			дисциплины, способен
			планировать работы
			химической
			направленности различной
			сложности, обрабатывать и
			интерпретировать
			полученные результаты с
			использованием
			теоретических знаний и
			практических навыков
	ı	ı	

	решения математически	
		физических задач.

2 Этапы формирования компетенций и оценочные средства (текущая аттестация)

2.1 Виды оценочных средств

		Наименование	Код
		оценочного	индикатора
$N_{\underline{0}}$	Контролируемые темы/разделы	средства для	достижения
		текущего	компетенции
		контроля	согласно ОПП
1	Раздел 1. Физические методы исследования	Контрольная	ИОПК-1.1.
	строения вещества:	работа, домашние	ИОПК-1.2.
	Тема 1. Дипольный момент, поляризуемость.	работы,	ИОПК 1.3.
	Тема 2. Спектроскопические методы	посещаемость	ИОПК-4.1.
	(вращательная, колебательная, электронная		ИОПК-4.2.
	спектроскопия)		ИОПК-4.3.
2	Раздел 2. Строение вещества: ИК-, ПМР и	Контрольная	ИОПК-1.1.
	масс-спектроскопия	работа, домашние	ИОПК-1.2.
	Тема 1. Инфракрасная спектроскопия.	работы,	ИОПК 1.3.
	Тема 2. Протонный магнитный резонанс.	посещаемость	ИОПК-4.1.
	Тема 3. Масс-спектроскопия		ИОПК-4.2.
			ИОПК-4.3.

Pаздел 1. Φ изические методы исследования строения вещества оценочные средства: решение расчетных задач.

Раздел 2. Строение вещества: ИК-, ПМР и масс-спектроскопия. Оценочные средства: расшифровка ИК, ПМР и масс- спектров.

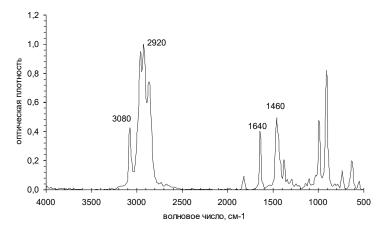
2.2 Содержание оценочных средств

Раздел 1. Физические методы исследования строения вещества Контрольная работа:

Вариант 1

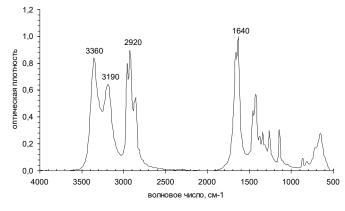
- 1. Дипольный момент хлорбензола равен 1,17 D, а его поляризуемость составляет $6,1\times 10^{-23}$ см 3 . Определите его относительную диэлектрическую проницаемость k_r (с точностью до сотых) при комнатной температуре, приняв плотность равной 1,1732 г/см 3 .
- 2. Волновые числа первых трех линий вращательного спектра окиси углерода $^{12}C^{16}O$ равны 3,85; 7,69 и 11.53 см $^{-1}$. Определите с точностью до трех значащих цифр вращательную постоянную (в см $^{-1}$), момент инерции и межъядерное расстояние.
- 3. В ИК-спектре поглощения молекулы $^2D^{80}$ Вг наблюдаются три колебательные полосы с центрами при 1839,82; 3634,10 и 5382,01 см $^{-1}$, интенсивность которых резко падает с увеличением волнового числа. Проведите отнесение полос, определите силовую постоянную (Н/м), постоянную ангармоничности и энергию диссоциации (эВ).

Вариант 2

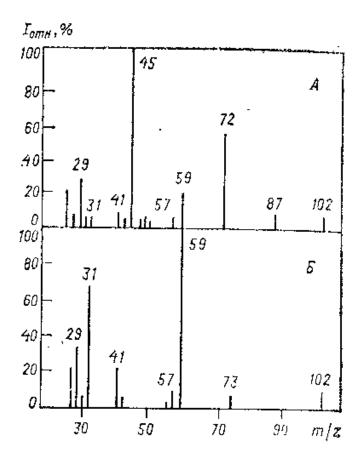

- 1. Вычислить поляризуемость (в см³) газообразной молекулы п-ксилола при 1200 К и давлении 2 атм, если относительная диэлектрическая проницаемость равна 1,003.
- 2. Рассчитайте с точностью до трех значащих цифр положение (в см $^{-1}$) первых трех линий вращательного спектра поглощения молекулы $^{12}\mathrm{C}^{16}\mathrm{O}$, если известно межъядерное

расстояние r_e =1,13 Å. Нарисуйте схему вращательных уровней и спектр. В каком направлении будет смещена система уровней и спектр для изотопозамещенной молекулы 12 C 18 O?

3. Для молекулы 15 N 16 O известна силовая постоянная связи 1550 Н/м и энергия диссоциации 637,6 кДж/моль. Найти постоянную ангармоничности, максимальное колебательное квантовое число. А также энергию перехода с 0 на 2 колебательный подуровень (см $^{-1}$).


Раздел 2. Строение вещества: ИК-, ПМР и масс-спектроскопия Контрольная работа: Вариант 1

1. Сопоставьте данные ИК-спектра со структурой 1-гексена



- 2. Какой из двух структур $CH_3C_6H_4OCH_2CH_3$ или $C_6H_5CH_2OCH_2CH_3$ отвечает спектр ПМР, содержащий триплет, квадруплет и два синглета при δ 1,0; 3,7; 4,6; и 7,3 м.д соответственно.
- 3. В масс-спектр пропанола имеет следующий вид: m/z 27(14), 28(11), 29(17), 31(100), 39(6), 41(10), 42(13), 43(4), 45(5), 58(5), 60(1). Какому из изомерных спиртов он принадлежит? Объясните пути образования основных фрагментных ионов?

Вариант 2
1. Из анализа ИК-спектра предложите структуру соединения C₄H₉ NO

- 2. Производное уксусной кислоты C5H10O2 в спектре ПМР имеет три сигнала (δ м. д.) : 1,05 (дублет); 1,95 (синглет); 4,85 (мультиплет); соотношение интенсивностей 6:3:1. О каком веществе идет речь?
- 3. На рисунке приведены масс-спектры изомерных эфиров этилизобутилового и этильтор-бутилового. Установите структуры веществ А и Б. Объясните происхождение основных фрагментов ионов:

Задания для выполнения домашних работ, содержатся в учебно-методическом обеспечении и в учебной литературе к курсу, которые представлены в пункте 11 и 12 рабочей программы данной дисциплины.

Оценочные материалы в полном объеме содержатся в архиве кафедры.

2.3 Методические рекомендации

2.3.1 Порядок проведения текущего контроля

Текущий контроль осуществляется на протяжении периода обучения по дисциплине в рамках организации и проведения лекционных занятий и практических занятий.

Студент проходит аттестацию 2 раза в семестр и допускается к экзамену при выполнении контрольных работ не ниже «удовлетворительно», выполнении 60 % домашних заданий, а также хорошей посещаемости практических и лекционных занятий (не менее 70 %).

2.3.2 Критерии оценивания по видам оценочных средств

- контрольная работа

«отлично», решены все задачи без замечаний

«хорошо», решены все задачи с небольшими замечаниями или присутствуют погрешности в расчетах (калькуляция)

«удовлетворительно», решено 2/3 от варианта контрольной работы, присутствуют нарушения в логике решения задач и расчетах

«неудовлетворительно», решено менее 2/3 от варианта контрольной работы, присутствуют значительные нарушения в логике решения задач и расчетах.

- домашние задания

«зачтено», если выполнено более 60 % от домашней работы «не зачтено», если выполнено менее 60 % от домашней работы

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, выполнения домашних заданий и фиксируется в форме контрольной точки не менее двух раз в семестр.

3 Порядок проведения и критерии оценивания промежуточной аттестации

3.1 Порядок проведения экзамена

Экзамен в шестом семестре проводится в устной форме по билетам, проверяющим ИОПК 1.1, ИОПК 4.1 и ИОПК 4.3. Продолжительность экзамена 1,5 часа, из них 1 час на подготовку ответа, 30 минут на устный ответ.

Экзаменационный билет состоит из двух частей. Первая часть предполагает развернутые устные ответы на вопросы по разделу 1 «Физические методы исследования строения вещества», вторая часть – по разделу 2 «Строение вещества».

3.2 Примеры экзаменационных билетов:

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра физической и коллоидной химии Дисциплина: Строение вещества

Экзаменационный билет № 1

- 1. Классификация физических методов. Прямая и обратная задачи. Требование корректности поставленных задач. Характеристическое время метода (вывод формулы для излучения).
- 2. Метод получения макроскопических количеств фуллеренов. Свойства фуллеренов. Химическая стабильность четных и нечетных структур. Правила стабилизации. ИК-, КР-спектры фуллеренов и их электронные спектры поглощения. Окисление фуллеренов. Частично радикальный характер молекул фуллеренов. Химическая связь в объемных карбофуллеренах. Главные факторы, определяющие особенности связи в каркасных и циклических структурах. Псевдоароматичность. Соединения включения.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра физической и коллоидной химии *Дисциплина: Строение вещества*

Экзаменационный билет № 4

- 1. Спектроскопические методы исследования (эмиссионная, абсорбционная). Молекулярная абсорбционная спектроскопия, типы переходов в молекулах. Закон Бугера-Ламберта-Бера. Причины отклонения от закона.
- 2. Методы исследования структурно нежестких молекул. Характеристическое время метода. Время жизни изомеров. Уширение спектральных линий. Зависимость спектра ЯМР нежестких молекул от температуры.

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра физической и коллоидной химии Дисциплина: Строение вещества

Экзаменационный билет № 10

- 1. Вращательные спектры. Модель нежесткого ротатора. Причины нежесткости молекул. Применение вращательной спектроскопии (какие геометрические параметры молекулы можно рассчитать из вращательного спектра?). Определение дипольных моментов методом Штарка (эффект Штарка).
- 2. Стереохимия. Молекулярная структура. Атомарная (геометрическая) и электронная структура. Принцип максимального перекрывания.

Оценочные материалы для промежуточной аттестации в полном объеме содержатся в архиве кафедры.

3.3. Критерии оценивания

Результаты дисциплины определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется студенту в случае полного безошибочного ответа с правильным применением понятий и определений, при демонстрации понимания на дополнительные вопросы.

Оценка «хорошо» выставляется студенту в случае правильного и достаточно полного ответа, не содержащего существенных ошибок, и при демонстрации понимания на дополнительные и наводящие вопросы.

Оценка «удовлетворительно» выставляется студенту в случае недостаточно полного объема ответа, наличия ошибок и пробелов в знаниях при ответе на теоретические вопросы.

Оценке «неудовлетворительно» соответствуют неполные и поверхностные ответы, указывающие на отрывочные знания. При ответах на дополнительные и наводящие вопросы допускает существенные ошибки, демонстрирует отсутствие понимания материала.

4 Оценочные средства для контроля остаточных знаний

- 1. В каких единицах измеряются волновые числа?
- а) см
- б) c⁻¹
- в) см⁻¹
- г) эВ
- 2. Методом ИК-спектроскопии изучают:
- а) колебание групповых и характеристических частот молекул
- б) геометрические параметры молекул (длина связи, валентный угол...)
- в) параметры кристаллической решетки
- г) магнитные свойства вещества
- 3. В каких областях спектра проявляются переходы между электронными состояниями молекулы?
- а) в ИК-области
- б) в УФ и видимой области
- в) в микроволновой и длинноволновой ИК-областях
- г) во всех областях спектра, кроме УФ-области

- 4. Какие виды излучения используются в дифракционных методах исследования?
- а) электронные пучки, рентгеновское излучение, потоки нейтронов
- б) все виды электромагнитного излучения
- в) ИК и УФ излучение
- г) микро- и радио-волновое излучение
- 5. Основное правило отбора для получения микроволнового спектра?
- а) отсутствие дипольного момента у молекулы
- б) наличие ядерного типа поляризуемости
- в) наличие дипольного момента у молекулы
- г) наличие валентных колебаний у молекулы
- 6. Спектр ПМР молекулы CHCl₂CH₃ состоит из
- а) синглета интенсивностью 5Н;
- б) из двух синглетов интенсивностью 1:3;
- в) из синглета и триплета интенсивностью 1:3;
- г) из квадруплета и дублета интенсивностью 1:3.
- 7. Спектры ЯМР принято приводить в шкале
- а) частот (Гц);
- б) напряженности магнитного поля (Эрстед)
- в) магнитной индукции (Гаус)
- г) миллионных долей
- 8. Интенсивность сигнала ПМР определяется
- а) числом эквивалентных протонов
- б) числом протонов при соседних атомах углерода
- в) путем сравнения с интенсивностью сигнала стандарта.
- 9. В масс-спектре регистрируются
- а) отрицательные ионы;
- б) положительные ионы
- в) нейтральные радикалы
- г) незаряженные частицы
- 10. Какой из нижеприведенных фуллеренов наночастиц на основе углерода является наиболее химически стабильным?
- a) C70
- б) C60
- в) C51
- г) C84
- 11. Какие виды излучения используются в методе фотоэлектронной спектроскопии?
- а) все виды электромагнитного излучения
- б) УФ и рентгеновское излучение
- в) ИК излучение
- г) микроволновое излучение

Полный перечень заданий для оценки остаточных знаний хранится в архиве кафедры.