Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Практические навыки пилотирования БАС

по направлению подготовки / специальности

35.03.04 Агрономия

Направленность (профиль) подготовки/ специализация: **Агробиология**

Форма обучения **Очная**

Квалификация **Агроном/ Агроном по защите растений**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А.С. Бабенко

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно-коммуникационных технологий

ПК-1 Способен разрабатывать системы мероприятий по повышению эффективности производства продукции растениеводства

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-1.1 Знает основные законы, понятия и определения математических и естественных наук, необходимые для решения типовых задач в области агрономии (демонстрирует знание терминологии математических естественных И формирующих профессиональную картину мира); взаимосвязи в природе (демонстрирует знание взаимоотношения организмов между собой и окружающей средой, формирование стабильной и безопасной среды обитания); методы решения задач развития агрономии на основе поиска и анализа современных достижений науки и производства. информационно-коммуникационные технологии в АПК

РООПК-1.2 Умеет применять знание основных законов математических и естественных наук для решения типовых задач в области агрономии; оперировать специфической терминологией, необходимой для решения типовых задач в агрономии; осуществлять выбор средств и методов их применения для решаемой задачи или проблемы в агрономии; использовать методы решения задач развития агрономии на основе поиска и анализа современных достижений науки и производства, применять информационно-коммуникационные технологии.

РОПК-1.1 Осуществляет сбор информации, необходимой для разработки элементов системы земледелия и технологий возделывания сельскохозяйственных культур

2. Оценочные материалы текущего контроля и критерии оценивания

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения двух практических работ и фиксируется в форме контрольной точки не менее одного раза в семестр.

Элементы текущего контроля:

- практические задания (РООПК-1.1, РООПК-1.2, РОПК-1.1).

Примеры практических заданий:

Практическое задание №1 «Полет в ручном режиме в 3D-симуляторе». Полет по заранее построенной трассе на БВС мультироторного типа за определенное время в 3D-симуляторе.

Инструкция:

- 1. Запустить симулятор на своем рабочем месте;
- 2. Подключить радиоаппаратуру к ПК и, при необходимости, откалибровать его в симуляторе;
 - 3. Запустить трассу, указанную по варианту задания;
- 4. Пролететь указанную трассу, избегая столкновений с препятствиями и падений;
 - 5. Подготовиться осуществлять полет на время;
- 6. Осуществить контрольный полет с фиксацией с фиксацией действий в виде скринкаста;
 - 7. Прислать скринкаст преподавателю на проверку.

Практическое задание №2 «Автоматический полет в Полигоне». Осуществление полета БВС мультироторного типа внутри территории Полигона в автоматическом режиме.

Инструкция:

- 1. Создать полетное задание с помощью специализированного ПО в условиях территории Полигона с указанием варианта задания;
 - 2. Осуществить подключение к наземной станции управления БВС;
- 3. Осуществить процедуру загрузки полетного задания в полетный контроллер БВС и убедиться в исправности;
 - 4. Запустить выполнение полетного задания по команде;
- 5. В процессе выполнения полета осуществлять мониторинг и вмешиваться в случае риска аварийной ситуации;
- 6. Осуществить посадку БВС в установленном месте и доклад о завершении полета.

Задания оцениваются по шкале 0-1-2 балла, где 0 — «не зачтено», 1 — «доработать», 2 — «зачтено». Для получения зачета необходимо набрать не менее 2 баллов за выполнение практических работ.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет в четвертом семестре проводится в формате практического задания внутри Полигона пилотирования. Продолжительность зачета 1 час.

Практическое задание предполагает проведение предполетной подготовки БВС мультироторного типа и осуществление полета на территории Полигона. В процессе выполнения задания слушатель должен указать место взлета и посадки аппарата, провести предполетную проверку БВС, загрузить полетное задание и принять решение о проведении полета. В течение полета слушатель непрерывно осуществляет мониторинг за параметрами БВС и вмешивается в полет при необходимости.

Распределение баллов осуществляется следующим образом:

- проведение процедуры подготовки аппарата к полету (2 балла);
- выбор взлётно-посадочной площадки (2 балла);
- подготовка полетного задания на указанной территории и с указанными ограничениями (3 балла);
 - загрузка полетного задания в БВС (2 балла);
 - успешное осуществление взлета и посадки аппарата (3 балла);
 - успешное проведение полета по заданному маршруту (4 балла).

Таким образом, максимально возможное количество баллов за прохождение промежуточной аттестации составляет 16 баллов.

Система оценивания задания промежуточной аттестации:

0–8 баллов – оценка «не зачтено»; 9–16 баллов – оценка «зачтено». На выполнение практического задания дается две попытки. В случае, если слушатель не справился с выполнением практического задания, допускается его пересдача в резервный день аттестации.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

- 1. Расшифруйте численное обозначение пропеллера размером 11х4,5
- а) Первое число в маркировке обозначает шаг винта в дюймах, а второе диаметр винта
- б) Первое число в маркировке обозначает диаметр винта в дюймах, а второе шаг винта

- в) Первое число в маркировке обозначает диаметр винта в дюймах, а второе диаметр отверстия под ось мотора
 - 2. Полетный контроллер это
 - а) электронное устройство, управляющее полетом летательного аппарата
 - б) электронное устройство, управляющее положением камеры для записи видео
 - в) электронное устройство, необходимое для связи через спутник
 - 3. Что НЕЛЬЗЯ делать во время автоматического полета?
 - а) принудительно останавливать выполнение полетного задания
 - б) корректировать движение БПЛА с помощью пульта управления
 - в) отходить от наземной станции управления
 - г) собирать данные по текущему полету
 - 4. Что НЕОБХОДИМО делать сразу после приземления?
 - а) Подойти к коптеру и отключить его аккумулятор
 - б) Перевести БПЛА в режим Disarm
 - в) Выключить пульт
 - г) Отключить полезную нагрузку БПЛА
 - 5. Как расшифровывается аббревиатура FPV?
 - а) носимая камера
 - б) полеты без управления
 - в) вид от первого лица
 - 6. Для каких целей предназначены телеметрийные модули?
 - а) для измерения угловых положений БПЛА;
 - б) для получения координат со спутников;
 - в) для ручного управления БПЛА;
 - г) для установки беспроводной связи с БПЛА.
 - 7. Акселерометр это
 - а) датчик, измеряющий высоту объекта
- б) устройство, анализирующее угловые положения объекта так, чтобы БПЛА удерживал горизонтальное положение
 - в) датчик, измеряющий мнимое ускорение объекта относительно одной из осей
 - г) устройство, анализирующее ускорение объекта относительно одной из осей
 - д) датчик, измеряющий угловые положения относительно одной из осей вращения
 - 8. Трехосевой гироскоп это
 - а) устройство, анализирующее угловые положения объекта
- б) датчик, измеряющий угловые положения объекта, относительно трех осей вращения
- в) датчик, измеряющий мнимое ускорение объекта относительно трех осей вращения
- г) датчик, измеряющий угловые положения объекта, относительно одной из осей вращения
 - 9. Какая основная функция датчиков, используемых в БВС:
 - а) измерение физического параметра и передача данных
 - б) измерение физических параметров и анализ данных
 - в) формирование управляющих сигналов на моторы
 - г) реализация программных алгоритмов полетного контроллера

- 10. Какое максимальное напряжение выдает литий-полимерный 4S аккумулятор?
- a) 12.2 B
- б) 14.8 В
- в) 16.8 В
- 10. В Российском законодательстве установлена максимальная масса квадрокоптера не требующего специального разрешения на полеты:
 - а) до 249 грамм
 - б) до 500 грамм
 - в) до 149 грамм
 - г) до 1000 грамм
 - 11. При калибровке датчиков происходит ...
 - а) приведение текущих измерений к эталонным
 - б) приведение эталонных измерений к текущим
 - в) формирование управляющих сигналов на исполнительные механизмы
 - г) подача электропитания на системы БВС
- 12. Расшифруйте численные обозначения, представленные в маркировке мотора: T-Motor MN4006-23 KV:380
 - а) это двигатель с высотой 40 мм, диаметром статора 6 мм и KV 380
 - б) это двигатель с диаметром статора 40 мм, высотой 6 мм и KV 380
 - в) это двигатель с диаметром ротора 40 мм, высотой 6 мм и KV 380
- 13. Загрузка и выполнение команд по автоматической полетной миссии происходит..
 - а) с внутренней памяти полетного контроллера
 - б) по радиоканалу с памяти наземной станции управления
- 14. Расшифруйте численные обозначения, представленные в маркировке мотора: T-Motor MN4112 KV:320
 - а) это двигатель с диаметром ротора 41 мм, высотой 12 мм и KV320
 - б) это двигатель с высотой 41 мм, диаметром статора 12 мм и KV320
 - в) это двигатель с диаметром статора 41мм, высотой 12 мм и KV320
- 15. Для корректного функционирования БАС под управлением полетного стека рх4 необходимо как минимум ...
 - а) 4 канала радиоуправления
 - б) 5 каналов радиоуправления
 - в) 6 каналов радиоуправления

Ключи к тесту:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
б	a	В	б	В	Γ	В	б	a	В	a	В	a	a	б

5. Информация о разработчиках

Окунский Михаил Викторович, ассистент кафедры информационного обеспечения инновационной деятельности ФИТ ТГУ, заведующий учебной лабораторией интеллектуальных систем управления.