Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Клеточная кинетика

по направлению подготовки

06.04.01 Биология

Направленность (профиль) подготовки: Физиология, биохимия, биотехнология и биоинформатика растений и микроорганизмов

Форма обучения Очная

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.В. Карначук

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен использовать и применять фундаментальные биологические представления и современные методологические подходы для постановки и решения новых нестандартных задач в сфере профессиональной деятельности.
- ОПК-3 Способен использовать философские концепции естествознания и понимание современных биосферных процессов для системной оценки и прогноза развития сферы профессиональной деятельности.
- ПК-3 Способен представлять результаты научных исследований в устной и письменной формах.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1 Демонстрирует понимание основных открытий, актуальных проблем, методических основ биологии и смежных наук
- ИОПК-1.2 Анализирует современное состояние и тенденции развития биологических наук
- ИОПК-1.3 Применяет общие и специальные представления, методологическую базу биологии и смежных наук при постановке и решении новых нестандартных задач в сфере профессиональной деятельности
- ИОПК-3.1 Представляет и описывает философские концепции естествознания и их связь с основными фундаментальными теориями и законами биологии, демонстрирует понимание их роли в формировании научного мировоззрения
- ИОПК-3.2 Демонстрирует понимание фундаментальных представлений о биосфере, моделей и прогнозов развития биосферных процессов, теоретические и методологические основы экологического мониторинга
- ИПК-3.1 Публично представляет результаты научно-исследовательской работы в устной форме

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- устные вопросы на семинаре;
- реферат;

Вопросы по темам семинаров (ИОПК-1.1, ИОПК-1.2, ИОПК-1.3)

Требуется дать верный развернутый ответ на вопрос. Вопросы формулируются на основании рассмотренной темы, вынесены в качестве вопросов в материалах итогового контроля отдельным списком.

Пример заданий по темам рефератов

Задание 1. (ИОПК-3.1, ИОПК-3.2, ИПК-3.1) — подготовка реферата по теме «Факторы, влияющие на ферментативную активность». Выполнение задания предполагает оперирование знаниями, полученными на предыдущих этапах формирования компетенций. Предполагается публичное представление результатов работы в устной форме. Подготовить доклад к реферату по плану: дать общую характеристику ферментов, современные представления о процессе регуляции ферментативной активности, осветить вопросы классификации факторов и их влияния на ферментативный катализ. Доклад длительностью до 12 минут. Представление доклада включает презентацию.

Задание (ИОПК-3.1, ИОПК-3.2, ИПК-3.1) — подготовка реферата по теме «Остановка роста, апоптоз и гибель клеток». Выполнение задания предполагает

оперирование знаниями, полученными на предыдущих этапах формирования компетенций. Предполагается публичное представление результатов работы в устной форме. Подготовить доклад к реферату по плану: введение в проблему, исторические аспекты представлений о динамике клеточного роста, современное состояние вопроса, проблемы связанные с регулированием клеточного роста как отдельных клеток, так и клеточных популяций. Доклад длительностью до 12 минут. Представление доклада включает презентацию.

Темы для рефератов и докладов к ним (ИОПК-3.1, ИОПК-3.2, ИПК-3.1):

- 1. Почему белки являются совершенными биокатализаторами?
- 2. Типы реакций, катализируемые ферментами.
- 3. Термодинамика ферментативных реакций.
- 4. История развития ферментативной кинетики. Ограничения кинетики Михаэлиса-Ментон.
 - 5. Инактивация ферментов под действием различных факторов.
- 6. Способы анализа механизмов ферментативных реакций. «Химическая релаксация».
- 7. Влияние различных факторов на скорость химических и ферментативных реакций.
- 8. Нестационарная кинетика ферментативных реакций. Экспериментальные методы изучения кинетики.
- 9. Кинетический эксперимент (история, современные представления, основные параметры кинетического эксперимента).
 - 10. Кинетика действия ферментов в открытых системах (основные вопросы).
 - 11. Применение ферментов в биотехнологии. Современное состояние вопроса.
 - 12. Способы регуляции каталитической активности.
 - 13. Применение ферментов в биологии, в медицине, в диагностике.
 - 14. Структурированные модели кинетики клеточного роста.
 - 15. Стехиометрия фотосинтеза.
 - 16. Кинетика тепловой гибели спор.
 - 17. Принципы культивирования клеток в хемостате.
 - 18. Апоптоз, некроз, различия, значение.
 - 19. Принципы культивирования микроорганизмов и клеток.
 - 20. Задачи и проблемы современной биотехнологии.
 - 21. Культивирование клеток в промышленной биотехнологии.
 - 22. Обзор математических моделей в биологии.
 - 23. Модели роста популяций.

Критерии оценивания:

Результаты работы определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено» выставляется, если даны правильные ответы на теоретические вопросы.

Оценка «не зачтено» выставляется, если даны не правильные ответы на теоретические вопросы.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Типовые задания для проведения промежуточной аттестации по дисциплине. В билет входит 2 вопроса из перечисленных ниже. Первый вопрос представляет собой теоретический вопрос, проверяющий ИОПК-1.1, ИОПК-1.2, ИОПК-1.3. Второй вопрос,

требующий оперирования примерами на основе ранее проведенного поиска и анализа научной информации по направлению дисциплины, проверяющий ИОПК-3.1, ИОПК-3.2.

Вопросы к итоговому контролю по дисциплине «Клеточная кинетика»:

Блок 1 (проверяющий ИОПК-1.1, ИОПК-1.2, ИОПК-1.3):

- 1. Предмет клеточной кинетики. Особенности клеточной кинетики в сравнении с химической кинетикой. Ферментативная кинетика. Биологическая кинетика.
- 2. Основные понятия ферментативной кинетики механизмы реакции, скорость реакции, константа скорости реакции, константа равновесия, порядок реакции.
- 3. Основные понятия химической кинетики: зависимость скорости реакции от концентрации реагентов; принцип сохранения общей концентрации вещества в реакциях; принцип независимости протекания реакций.
- 4. Основные понятия ферментативной кинетики. Белки как совершенные биокатализаторы. Ферменты: активный центр фермента; субстрат; фермент- субстратный комплекс; активированный комплекс; специфичность действия ферментов.
 - 5. Характеристика ингибиторов и активаторов ферментативных реакций.
 - 6. Механизмы действия биологических катализаторов.
- 7. Уравнение Михаэлиса-Ментен. Графические методы определения параметров уравнения Михаэлиса-Ментен.
 - 8. Интегральная форма уравнения Михаэлиса-Ментен.
- 9. Ингибирование ферментативных реакций. Классификация и механизм действия ингибиторов.
- 10. Конкурентное и неконкурентное ингибирование ферментативных реакций. Способы определения констант уравнения Михаэлиса-Ментен при конкурентном и неконкурентном ингибировании.
 - 11. Механизм влияния рН на скорость ферментативной реакции.
 - 12. Механизм влияния температуры на скорость ферментативной реакции.
 - 13. Уравнение Моно для описания кинетики роста биомассы.
- 14. Уравнение роста в экспоненциальной фазе. Удельная скорость роста. Выход биомассы, экономический коэффициент.
 - 15. Культура клеток. Кривая роста. Характеристика фаз роста.

Блок 2 (проверяющий ИОПК-3.1, ИОПК-3.2.):

- 1. Модели роста микробных популяций, отражающие ход кривой роста. Модель Ферхюльста.
- 2. Характеристика процессов ингибирования и активации роста клеточной культуры. Модели, учитывающие конкурентное и неконкурентное ингибирование роста.
- 3. Ингибирование роста клеточной культуры в условиях избытка субстрата и продуктами метаболизма.
- 4. Влияние температуры и концентрации водородных ионов на рост клеточной культуры (микроорганизмов).
- 5. Характеристика систем и условий для непрерывного культивирования клеточных культур.
- 6. Лабораторные и промышленные ферментеры. Их назначение, типы, конструкция и области применения.
- 7. Хемостаты, турбидостаты и другие способы управления процессом культивирования клеточных культур.
- 8. Актуальность применения клеточных культур в различных областях биологии, медицины и сельского хозяйства. Современное состояние биотехнологии.
 - 9. Принцип работы хемостата и турбидостата.
- 10. Периоды индукции, остановка роста, апоптоз и гибель клеток. Кинетические модели апоптоза. Ограничения роста соматических клеток в культуре.

- 11. Апоптоз, теломеры и теломераза. Многостадийность клеточного цикла. Зависимость скорости роста от концентрации лимитирующего субстрата и параметров клеточного цикла.
- 12. Обзор двухсубстратных-двухпродуктных механизмов ферментативных реакций. Схема Уонга-Хейнса.
 - 13. Стехиометрия клеточного роста и образования продуктов метаболизма.
 - 14. Методы культивирования клеток. Общие прниципы.
- 15. Общие закономерности развития популяции. Популяции, взаимодействующие по принципу хищник-жертва. Модель Лотки-Вольтеры.

Критерии оценивания:

Результаты работы определяются оценками «зачтено» и «не зачтено».

Оценка «зачтено» выставляется, если даны правильные ответы на теоретические вопросы.

Оценка «не зачтено» выставляется, если даны не правильные ответы на теоретические вопросы.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

- 1 блок (ИОПК-1.1.): выбрать варианты ответа.
- 1. Абсолютная специфичность это способность фермента катализировать:
- а) превращение только двух субстратов;
- б) превращение стереоизомеров;
- в) превращение только одного субстрата;
- г) превращение веществ с одним типом химической связи;
- д) превращение веществ, относящихся к одному классу метаболитов.
- 2. Способность фермента катализировать превращение субстрата по одному из возможных метаболических путей называется:
 - а) относительной специфичностью;
 - б) групповой специфичностью;
 - в) каталитической специфичностью;
 - г) абсолютной специфичностью;
 - д) частичной специфичностью.
- 3. Соединение субстрата с активным центром фермента осуществляется по принципу....
 - а) субстратности;
 - б) термостабильности;
 - в) термолабильности;
 - г) электрофоретичности;
 - д) комплементарности.
 - 4. Фермент характеризуется:
 - а) изменяемостью после завершения реакции;
 - б) термостабильностью;

- в) нечувствительностью к действию рН;
- г) специфичностью;
- д) низкой каталитической активностью.
- 5. Доказательством белковой природы ферментов является:
- а) низкая специфичность;
- б) аминокислотный состав;
- в) наличие активного центра;
- г) отсутствие электрофоретической подвижности;
- д) термостабильность.
- 2 блок (ИОПК-1.2): выбрать варианты ответа.
- 6. Ферменты отличаются от неорганических катализаторов тем, что:
- а) проявляют более низкую каталитическую активность;
- б) активны при температуре 15-90 °C;
- в) расходуются в реакции;
- г) термолабильны;
- д) термостабильны.
- 7. К классу оксидоредуктаз относят:
- а) карбоксилазы;
- б) дегидрогеназы;
- в) киназы;
- г) трансферазы;
- д) лигазы.
- 8. Как называются ферменты, катализирующие реакции внутримолекулярного переноса атомов или групп атомов?
 - а) гидролазы;
 - б) изомеразы;
 - в) лигазы;
 - г) трансферазы;
 - д) оксидоредуктазы.
- 9. Ферменты, катализирующие расщепление внутримолекулярных связей при участии воды, относятся к классу:
 - а) лиазы;
 - б) лигазы;
 - в) гидролазы;
 - г) оксидоредуктазы;
 - д) изомеразы.
- 10. Ферменты, катализирующие реакции образования сложных веществ из более простых, относятся к классу:
 - а) гидролазы;
 - б) лиазы;

- в) лигазы;
- г) дегидрогеназы;
- д) изомеразы.

Ключи: 1-в; 2-в; 3-д; $4-\Gamma$; $5-\delta$; $6-\Gamma$; $7-\delta$; $8-\delta$; 9-в; 10-в.

Информация о разработчиках

Чурин А.А., д.м.н., профессор кафедры физиологии растений, биотехнологии и биоинформатики БИ ТГУ