Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Дискретная математика

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности;

ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.1 Знает основные законы, модели и методы исследования физических процессов и явлений;

ИПК-1.2 Владеет практическими навыками использования современных методов исследования в выбранной области.

2. Задачи освоения дисциплины

- Освоить аппарат дискретной математики и научиться применять базовые знания в сфере физико-математических наук.
- Научиться применять понятийный аппарат...дискретной математики для ... решения практических задач в профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 5, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: достаточно хорошее знание школьной математики

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 32 ч.;
- практические занятия: 16 ч.;
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Функции алгебры логики (Булевы функции). Табличное представление булевых функций. Элементарные функции. Формулы над множеством элементарных функций. Существенные и фиктивные переменные. Равенство функций и эквивалентность формул. Основные тождества алгебры логики. Операции поглощения и склеивания.

Тема 2. Принцип двойственности. Теорема о двойственной функции. Разложение функции по подмножеству переменных. Частные случаи разложения по одной и всем переменным.

Тема 3. Полнота и замкнутость. Теорема о полной системе. Определение замыкания. Свойства замыканий. Определение замкнутого класса. Свойства замкнутых классов, сохраняющих константы. Замкнутый класс самодвойственных функций и его свойства. Сравнимые наборы. Замкнутый класс монотонных функций и его свойства. Полином Жегалкина. Теорема о единственности полинома для функции. Линейный полином. Замкнутый класс линейных функций и его свойства. Теорема о необходимых и достаточных условиях полноты систем булевых функций. Теорема о числе функций полных систем. Функции к-значной логики (определение, табличное задание)

Тема 4. Минимизация ДНФ. Теорема о числе ДНФ функций *п* переменных. Определения минимальной и кратчайшей ДНФ. Геометрическая интерпретация булевой функции (*п*-мерный куб, матрица в коде Грея). Определение интервала. Свойства интервала. Допустимый и максимальный интервалы. Покрытие множества единичных наборов функции интервалами. Кратчайшее и минимальное покрытия. Импликанта, простая импликанта, их свойства. Сокращенная ДНФ. Теорема Квайна о сокращенной ДНФ. Троичный векторы и операции над ними. Алгоритм Квайна-МакКласки построения сокращенной ДНФ. Таблица Квайна и ее кратчайшие и минимальные покрытия. Теорема Блейка. Алгоритм Блейка построения сокращенной ДНФ. Общая схема построения минимальных и кратчайших ДНФ. Минимизация частичных булевых функций. Реализация частичной функции. Допустимый и максимальный интервалы частичной функции. Сокращенная ДНФ и ее построение. Построение минимальной и кратчайшей реализации частичной функции по таблице Квайна.

Тема5. Комбинационные дискретные устройства. Представление о дискретном устройстве. Комбинационные и последовательностные дискретные устройства. Структура и поведение комбинационных дискретных устройств. Задача анализа. Задачи синтеза: синтез в базисе ДНФ.

Тема 6. Элементы теории автоматов. Определение автомата. Его представление таблицами переходов-выходов. Диаграммы переходов. Полностью определенные и частичные автоматы. Автономные автоматы, автоматы без выходов, комбинационные автоматы, автоматы Мили, Мура. Триггеры. Канонические уравнения и их получение. Формальные языки и настроенные диаграммы. Конечно-автоматные языки и операции над ними. Замкнутость конечно-автоматных языков.

Тема 7. Основные понятия теории графов. Определения простого, общего, ориентированного графов. Смежность вершин и ребер. Степень вершины. Лемма о рукопожатиях и ее следствие. Матрицы смежности и инциденций. Связность графов. Операции объединения и соединения графов. Простейшие типы графов.

Тема 8. Маршрут, цепь, простая цепь, цикл. Определение связности графов с использованием понятия простой цепи. Диаметр и обхват графа. Радиус и центры графа. Разделяющее множество, разрез, мост. Лемма о существовании цикла в графе. Эйлеров граф Теорема о необходимых и достаточных условиях графа быть Эйлеровым. Алгоритм Флери построения Эйлерового цикла. Ормаршрут, орцепь, простая орцепь, орцикл. Гамильтоновы графы. Теорема Дирака. Деревья и их свойства. Остовное дерево. Циклический ранг графа. Плоские и планарные графы. Примеры непланарных графов. Гомеоморфные графы. Операция стягивания вершин в графе. Две теоремы о необходимых и достаточных условиях непланарности графов. Толщина графа. Теорема об укладке графа

в трехмерном пространстве. Жорданова кривая. Определение грани плоского графа. Теорема Эйлера о соотношении вершин, ребер и граней в плоском графе. Теорема о степени вершины в плоском графе. Раскраска вершин графов. Правильная раскраска. Хроматическое число. Теоремы о раскраске произвольного графа. Теорема о раскраске плоского графа в 6 цветов. Теорема о 5 красках. Алгоритм минимальной раскраски.

Тема 9. Сети. Определение сети. Изоморфизм сетей. Исток и сток в сети. Последовательное и параллельное соединение сетей. Алгоритм Дейкстры. Потоки в сетях. Определение потока. Величина потока. Сечение и простое сечение. Пропускная способность простого сечения. Теорема Форда-Фалкерсона. Алгоритм Форда-Фалкерсона поиска максимального потока в сети.

Тема10 Новые подходы к описанию поведения логических схем. ROBDD-графы и их свойства. КНФ Цейтина. Использование SAT решателей для извлечения безызбыточной ДНФ из логической схемы.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, и вопросов к посещающим лекции.

10. Порядок проведения и критерии оценивания аттестации

Зачет в первом семестре проводится в письменной форме по билетам. С последующей беседой со студентом по материалу билета и по невошедшим вопросам по курсу в целом. Продолжительность зачета 3 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- 1. Матросова А. Ю. Дискретная математика: учебно-методический комплекс / А. Ю. Матросова, С. А. Останин; Том. гос. ун-т, Ин-т дистанционного образования. Томск: ИДО ТГУ, 2007. . URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:00024
- 2. Останин С. А. Бинарные решающие диаграммы и их приложения : учебнометодический комплекс / С. А. Останин, А. Ю. Матросова ; Том. гос. ун-т, [Ин-т дистанционного образования]. Томск : [ИДО ТГУ], 2011. . URL: http://vital.lib.tsu.ru/vital/acc

Полный курс лекций доступен каждому студенту.

б) дополнительная литература:

Скобцов В.Ю. Моделирование, тестирование и диагностика цифровых устройств [Электронный ресурс] / Скобцов В.Ю., Скобцов Ю.А., Сперанский Д.А.; Нац. Открытый Ун-т «ИНТУИТ». – М. : НОУ «ИНТУИТ», 2003 – 2016.

в) ресурсы сети Интернет:

не требуются

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- в) профессиональные базы данных (при наличии):
- Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (ЕМИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Матросова Анжела Юрьевна, д.т.н.профессор, профессор ИПМКН НИТГУ