Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Операционные системы

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности.
- ОПК-6. Способен понимать принципы работы современных информационных технологий и использовать их для решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1. Обладает необходимыми знаниями основных концепций современных вычислительных систем.
- ИОПК-2.2. Использует методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения.
- ИОПК-2.3. Использует инструментальные средства высокопроизводительных вычислений в научной и практической деятельности.
- ИОПК-6.1. Обладает необходимыми знаниями в области информационных технологий, в том числе понимает принципы их работы.
- ИОПК-6.2. Применяет знания, полученные в области информационных технологий, при решении задач профессиональной деятельности.
- ИОПК-6.3. Использует современные информационные технологии на всех этапах разработки программных систем.

2. Задачи освоения дисциплины

- Освоить принципы организации и архитектурные решения при построении мультипрограммных многопроцессорных операционных систем и системных оболочек, стратегий и алгоритмов управления ресурсами BC, способов виртуализации ресурсов BC.
- Научиться применять знания об операционных системах для создания надежной, производительной и комфортной среды разработки, внедрения и эксплуатации приложений и сервисов в заданных условиях.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы. Дисциплина входит в модуль «Компьютерные науки».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Пятый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Архитектура вычислительных систем, Дискретная математика, Основы программирования

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

-лекции: 48 ч.

-лабораторные: 16 ч.

в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Функции и архитектурные требования к ОС

Эволюция операционных систем (ОС). Классификация ОС. Клиентские и серверные ОС. ОС пакетной обработки. ОС реального времени. Жесткие и мягкие (гибкие) системы реального времени. ОС с разделением времени. Интерактивные ОС. Специализированные и встроенные ОС. Сетевые корпоративные ОС. Многопроцессорные ОС. Аппаратные, программные и информационные ресурсы вычислительной системы. Функции ОС. Эксплуатационные требования к ОС. Службы и сервисы ОС. Монолитные и многоуровневые (многослойные) системы. Ядро (супервизор) ОС. Функции супервизора. Вспомогательные модули ОС. Средства аппаратной поддержки ОС. Машинно-зависимые компоненты ОС. Концепция микроядерной архитектуры ОС.

Тема 2. Процессы и потоки, синхронизация процессов

Понятие процесса и потока. Свойства процесса. Реализация процесса. Дескриптор процесса. Модель потока. Взаимодействие процессов. Критический ресурс. Критический участок процесса. Синхронизация процессов с помощью элементарных приемов нижнего уровня. Аппаратные неделимые операции "Блокировка памяти" и "Проверить и установить". Алгоритм Деккера. Семафоры общие и двоичные. Синхронизация процессов на двоичных семафорах. Задача "Поставщик-потребитель". Мьютексы. Синхронизация процессов с помощью приемов верхнего уровня. Монитор Хоара. Почтовые ящики. Барьеры. События и сигналы. Монитор, основанный на управляющей структуре «Таблица синхронизации». Управление процессами на основе таблицы синхронизации. Процедуры ТР, TV, WAIT, POST. Процесс CLOCK. Определение тупика. Условия возникновения тупиков. Предотвращение тупиков, основанное на нарушении одного из условий возникновения тупика. Динамический обход тупиков. Алгоритм банкира для одного и нескольких видов ресурсов. Обнаружение тупиков. Восстановление после тупиков.

Тема 3. Распределение времени процессора между конкурирующими процессами Состояния процесса. Методы планирования в мультипрограммных системах. Вытесняющее и не вытесняющее планирование. Разделение времени. Квантование времени. Планирование в системах пакетной обработки. Планирование в интерактивных системах. Планирование по наивысшему приоритету. Круговорот. Очереди с обратной связью. Многоуровневые очереди с обратной связью. Планирование в системах реального времени.

Тема 4. Управление оперативной памятью

Именующая функция. Функция памяти. Функция содержимого. Способы объединения модулей. Динамическое связывание модулей. Распределение памяти. Статическое и динамическое распределение. Стратегии распределения памяти. Перекрытие программ. Попеременная загрузка заданий. Сегментация программ. Страничная организация памяти. Сегментация в сочетании со страничной организацией памяти. Статическое и динамическое установление связей. Фрагментация памяти. Внешняя и внутренняя фрагментация. Кэширование адресуемых объектов и отображений виртуальных (логических) адресов на реальные. Реализация однозначности входа в кэшируемое отображение «Логический адрес – Физический адрес» объекта.

Тема 5. Виртуальная память

Многоуровневая организация виртуальной памяти. Стратегии распределения памяти для сегментов переменной длины. Список свободной памяти, способы его организации. Списки пустот, упорядоченные по адресам, по размеру пустоты. Списки пустот, организованные в виде системы расщепления. Уплотнение. Стратегии распределения для страниц фиксированной длины. Стратегии подкачек страниц. Подкачка по запросу. Опережающая подкачка. Стратегии вытеснения страниц.

Тема 6. Управление внешней памятью

Планирование работы с магнитными дисками. Цели и принципы планирования. Оптимизация времени поиска цилиндра. Оптимизация времени ожидания записи. Конфигурирование подсистемы внешней памяти вычислительной системы (ВС). Функции файловой системы. Многоуровневая организация системы управления файлами. Порты ввода-вывода. Ввод-вывод, отображаемый на адресное пространство оперативной памяти. Многослойная модель подсистемы ввода-вывода. Логическая и физическая организация файловой системы. Блокировка записей. Буферизация (кэширование операций ввода/вывода). Способы организации файлов. Файловые операции. Методы доступа к записям файла (синхронный/асинхронный, последовательный/прямой). Дескриптор файла. Целостность файловых систем. Избыточные дисковые RAID-системы.

Тема 7. Принципы оценки производительности вычислительной системы

Цели исследований и показатели производительности. Пиковая и реальная производительность. Методы оценки производительности. Тесты производительности: производителей, стандартные, пользователей. Стандартные тесты: iCOMP, SPECxx, Linpack, TPC, WebStone.

Тема 8. Защита объектов ОС

Статус защиты. Защита паролями. Требования к ОС по безопасности. Внешняя безопасность. Операционная безопасность. Полномочия и объектно-ориентированные системы. Активные и пассивные элементы сферы защиты. Объекты защиты. Субъекты доступа к защищаемым объектам. Домены и возможности. Описание статуса защиты. Атрибуты доступа. Управление статусом защиты. Матричное представление статуса защиты. Списки возможностей. Списки управления доступом. Механизм «замок-ключ». Криптография. Криптографические секретные системы. Шифр. Системы с открытыми ключами. Цифровые подписи. Схемы шифрования.

Тема 9. Организация мультипроцессорных ОС

Вычислительные системы с однородной (сосредоточенной) и неоднородной (распределенной) памятью. SMP – симметричная многопроцессорная обработка. CMP – перестраиваемая симметричная многопроцессорная обработка. МРР – многопроцессорная архитектура с распределенной памятью (массовый параллелизм). Кластеры МРР-систем. Архитектура cc-NUMA. Средства разновидность виртуализации вычислительных систем. Средства разработки параллельных программ. Модель программирования для ВС с общей (разделяемой) памятью UMA (стандарт Open MP). Модель программирования для BC с распределенной памятью NUMA (стандарт MPI). Неявная (аппаратная) когерентность для сосредоточенной и распределенной памяти. Модели состоятельности многоуровневой памяти. Алгоритм MESI для сосредоточенной памяти. Алгоритм DASH для распределенной памяти. Явная (программная) когерентность для BC с массовым параллелизмом. Масштабируемый когерентный интерфейс SCI. Типы мультипроцессорных ОС (МОС). Модель мультипроцессорной ОС с индивидуальной ОС для каждого процессора. Модель асимметричной мультипроцессорной ОС «хозяинподчиненный». Модель симметричной мультипроцессорной ОС. Планирование времени мультипроцессора для несвязанных и связанных процессов. Родственное планирование. Бригадное планирование.

Тема 10. Коммуникационные средства многомашинных систем

Обмен сообщениями (парадигма ввода-вывода). Вызов удаленных процедур. Распределенная память совместного пользования. Средства взаимодействия распределенных ВС. ПО, основанное на документе. ПО, основанное на распределенной файловой системе. Модель переноса файлов. Именование объектов. Семантика совместного использования файлов. ПО, основанное на совместно используемых объектах. ПО, основанное на координации. Природа параллелизма компьютерных вычислений. Средства разработки параллельных программ. Методы реализации многоуровневой памяти. Модели когерентности состоятельности памяти. Коммуникационное ПО распределенных систем (компьютерных сетей).

Тема 11. Технологии виртуализации

Цели и решения. Виртуальная инфраструктура. Доменная архитектура многопроцессорных вычислительных систем (ВС). Системные и прикладные разделы ВС. Разделение ВС на классы приложений. Применения технологий виртуализации: разработка и тестирование ПО; моделирование работы реальных систем на исследовательских стендах; консолидация серверов с целью повышения эффективности использования оборудования; консолидация серверов в рамках решения задач поддержки унаследованных приложений; демонстрация и изучение нового ПО; развертывание и обновление прикладного ПО в условиях действующих информационных систем; работа на ПК с разнородными операционными средами. Эмуляция аппаратная и программная. Модульный состав эмулятора.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, проверка теоретических вопросов по лекционному материалу, выполнения и презентации домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в пятом семестре проводится в письменной форме по билетам. Экзаменационный билет включает теоретические вопросы, оценивающие достижение запланированных индикаторов, решение практических задач и интерпретацию полученных результатов. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в LMS iDo lms.tsu.ru/course/view.php?id=9861
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине. (https://www.tsu.ru/sveden/education/eduop/).
 - в) Плана семинарских / практических занятий по дисциплине нет.
 - г) Методических указаний по проведению лабораторных работ нет.

д) При выполнении самостоятельной работы студенты должны повторить пройденные лекционные материалы и ознакомиться по дополнительной литературе и из ресурсов сети интернет с пройденными темами.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- а) основная литература:
- Олифер В.Г., Олифер Н.А. Сетевые операционные системы. 2-е изд. СПб.: Питер, 2009. 669 с.
- Танненбаум Э., Бос X. Современные операционные системы. 4-е изд. СПб.: Питер, 2019. 1120 с.
 - б) дополнительная литература:
- Назаров С.В., Широков А.И. Современные операционные системы 2-е изд. М.: Национальный Открытый Университет «ИНТУИТ», 2016. 352 с.
- − Замятин А.В., Сущенко С.П. Операционные системы. Томск: Издательство Томского государственного университета, 2020. 220 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (ЕМИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий лабораторного типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Сущенко Сергей Петрович, д-р техн. наук, профессор, кафедра прикладной информатики ИПМКН ТГУ, заведующий кафедрой.