Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Структурное проектирование

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

Томск - 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-4. Способен участвовать в разработке технической документации программных продуктов и комплексов с использованием стандартов, норм и правил, а также в управлении проектами создания информационных систем на стадиях жизненного пикла.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-4.1. Обладает необходимыми знаниями нормативной базы профессиональной деятельности.

ИОПК-4.2. Применяет знания нормативной базы в профессиональной деятельности.

ИОПК-4.3. Разрабатывает техническую документацию, связанную опрофессиональной деятельностью.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- лабораторные работы (ИОПК-4.1, ИОПК-4.2, ИОПК-4.3).

Код и наименование результатов обучения	Вид оценочного средства
	1. Лабораторная работа №1.
ИОПК-4.1	2. Лабораторная работа №2.
	1 H 5
	1. Лабораторная работа №2.
ИОПК-4.2	2. Лабораторная работа №3.
	3. Лабораторная работа №4.
	1. Лабораторная работа №2.
ИОПК-4.3	2. Лабораторная работа №3.
	3. Лабораторная работа №4.

Требования к лабораторным работам

Требования к лабораторной работе 1:

1. Построить SADT-модели всех организационных (выполняемых людьми, организациями, подразделениями) бизнес-процессов, выделенных в техническом задании. Если существует бизнес-процесс, частями которого являются бизнес-процессы технического задания, можно представить одну общую SADT-модель.

Модели должны отражать новое видение процессов с участием будущей информационной системы (ИС).

Листовые блоки модели с участием ИС должны соответствовать одной логической транзакции (единой непрерываемой единице диалога, выполняющей законченную работу с данными одного человека).

Для стыковки организационных SADT-моделей с будущими моделями функций ИС (DFD, FHD) можно либо использовать одинаковые наименования блоков SADT и функций, либо указать наименования функций ИС в качестве специфических механизмов SADT-блоков.

Можно (но это не является обязательным) придумать модели, отражающие старое видение процессов (как бы до реинжиниринга).

2. Утвердить SADT-модели бизнес-процессов (на бумаге) у преподавателя (в дальнейшем необходимо иметь их при себе при любых контактах с преподавателем по поводу выполнения последующих лабораторных работ).

Требования к лабораторной работе 2

Подготовить и привести в соответствие информационные схемы предметной области (как в репозитории, так и в словаре Oracle), построенные в ходе лабораторных работ по курсу «Базы данных».

В частности должны быть обеспечены:

- ER-схема в нотации Oracle Designer (Баркера);
- реляционная схема в репозитории и словаре Oracle, включающая определения таблиц, представлений, последовательностей, триггеров и ограничений целостности.

Чтобы было меньше проблем в дальнейшем, в идеале следует повторить весь процесс проектирования БД в прямом направлении (от ERD до реляционных схем), максимально добиваясь автоматизма преобразований (DDT, генератор DE) и минимизируя ручную доводку.

При этом в обязательном порядке (опять же чтобы не было проблем в дальнейшем) в каждой таблице обязан быть первичный ключ. Он должен быть либо суррогатным ключом, либо (в случае таблиц, реализующих связи M:N) – группой из двух внешних ключей, ссылающихся на суррогатные ключи.

Построить РМ-модель предметной области, определив функциональные роли всех пользователей и процессы (функции), соответствующие логическим транзакциям.

Декомпозицию процессов в PM следует проводить до тех пор, пока не будут получены функции, целиком выполняемые пользователем одной роли. Если при этом они не будут элементарными (реализуемыми с помощью одного окна диалога), дальнейшую декомпозицию лучше провести в DFD или FHD.

Утвердить РМ-модель (на бумаге) у преподавателя (в дальнейшем необходимо иметь ее при себе при любых контактах с преподавателем по поводу выполнения последующих лабораторных работ).

Для сложных функций (включающих не одно окно диалога) построить DFD-модели. Для всех функций РМ-модели построить FHD-модели.

Листьями этих моделей должны быть функции, чьи задачи решаются с помощью одной формы (возможно с подформами).

Если существует бизнес-процесс, частями которого являются бизнес-процессы технического задания, можно представить одну общую FHD-модель.

Для функций-листьев указать использование множеств сущностей и атрибутов ERD-модели.

Полезно перед этим представить эскиз окна, определить master и detail компоненты модуля, для каждого компонента модуля определить base и, возможно, lookup таблицы. (Для знакомства с особенностями диалога и структурой OF-модулей обратитесь к файлу "OD OF Generator.doc" в каталоге Лаборатории\DOCS.)

Использование данных в функциях определяется пока на уровне множеств сущностей ER-модели и их атрибутов. Поскольку сейчас ничего нельзя сказать об использовании множеств связей, действия с ними необходимо не забыть указать позже на уровне использования таблиц в модулях.

Утвердить DFD- и FHD-модели (на бумаге) у преподавателя (в дальнейшем необходимо иметь ее при себе при любых контактах с преподавателем по поводу выполнения последующих лабораторных работ).

Построить в Matrix Diagrammer (MD) и применять для контроля использования данных матрицы "Business Functions to Entities" и "Business Functions to Attributes", а для контроля использования функций - "Business Units to Business Functions". Ведомость на выдачу зарплаты с группировкой по полу

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Критерии оценивания лабораторных работ Для оценки лабораторных работ используется расширенная шкала оценивания, приведенная в таблице.

Оце	Форма	Численное	Критерий оценивания	Перевод в
нка	записи	значение		традиционную
	прописью			шкалу
5+	Отл-плюс	5,3	Обучающийся показал	Отлично
			творческое отношение к	
			обучению, в совершенстве	
			овладел всеми теоретическими	
			вопросами, показал все	
			требуемые умения и навыки в	
			работе с программными	
			продуктами.	
5	Отлично	5,0	Обучающийся показал	
5-	Отл-минус	4,7	отличный уровень владения	
			всеми теоретическими	
			вопросами, показал все	
			требуемые умения и навыки в	
			работе с программными	
			продуктами.	
4+	Хор-плюс	4,3	Обучающийся овладел всеми	Хорошо
4	Хорошо	4,0	теоретическими вопросами,	
4-	Хор-минус	3,7	частично показал основные	
			умения и навыки в работе с	
			программными продуктами.	
3+	Уд-плюс	3,3	Обучающийся имеет	Удовлетворител
3	Удовл.	3,0	недостаточно глубокие знания	ьно
			по теоретическим разделам	
			дисциплины, показал не все	
			основные умения и навыки в	
			работе с программными	
			продуктами.	

3-	Уд-минус	2,7	Обучающийся имеет	
			недостаточно глубокие знания	
			по теоретическим разделам	
			дисциплины, показал не все	
			основные умения и навыки в	
			работе с программными	
			продуктами. Минимально	
			возможный допустимый	
			уровень владения предметом.	
2+	Неуд-плюс	0	Обучающийся имеет	Неудовлетворит
			существенные пробелы по	ельно
			отдельным теоретическим	
			разделам дисциплины и не	
			владеет основными умениями и	
			навыками в работе с	
			программными продуктами, но	
			с возможностью повторной	
			пересдачи экзамена	
2	Неудовл.	0	Обучающийся имеет	
			существенные пробелы по	
			отдельным теоретическим	
			разделам дисциплины и не	
			владеет основными умениями и	
			навыками в работе с	
			программными продуктами,	
			требуется повторное изучение	
			дисциплины	

Оценка за промежуточную аттестацию по дисциплине выставляется как среднеарифметическая по итогам текущего контроля успеваемости.

Для оценки промежуточной аттестации используется традиционная шкала оценивания.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Для того, чтобы оценить остаточные знания можно воспользоваться одним из заданий, которые студенты выполняли в ходе лабораторных работ. Например:

- 1. Построить SADT-модель организационного бизнес-процесса.
- 2. Построить РМ-модель предметной области.
- 3. Для функций РМ-модели построить FHD-модели.

Для оценки задания используется расширенная шкала оценивания,

Информация о разработчиках

Бабанов Алексей Михайлович, к.т.н., доцент, кафедра программной инженерии, доцент