Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Математический анализ

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.

ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- контрольная работа;

Тест по разделу 1 (ИОПК-1.1.)

1. Выберите выражения, которые являются неопределенностями:

a) 1^{∞} , ∞^{∞} , 0^{0} , 0^{∞}

b) 1^{∞} , 0^{0} , 0^{∞}

c) 1^{∞} , ∞^{0} , 0^{0}

d) 1°, ∞^0 , 0°

2. Укажите область определения функции $y = \arcsin x$

 $a)(0,\infty)$

b) (-1, 1)

 $c)(-\infty, +\infty)$

d) [-1,1]

- 3. Выберите из предложенных вариантов тот, который является геометрической интерпретацией формулы Лагранжа:
- a) не существует точки, принадлежащей отрезку (a, b), в которой касательная параллельна секущей, соединяющей точки (a, f(a)), (b, f(b));
- b) существует точка, принадлежащая отрезку (a, b), в которой касательная перпендикулярна секущей, соединяющей точки (a, f(a)), (b, f(b));
- c) существует точка, принадлежащая отрезку (a, b), в которой касательная параллельная секущей, соединяющей точки (a, f(a)), (b, f(b));
- d) существует точка, принадлежащая отрезку (a, b), в которой касательная параллельна любой секущей;
 - e) верного ответа нет.
 - 4. Чем можно объяснить наличие остаточного члена формулы Тейлора?
 - а) тем, что остаточный член стремится к нулю;
 - b) тем, что остаточный член стремится к бесконечности;
 - с) тем, что остаточный член это бесконечно малая величина;
 - d) тем, что произвольная функция не всегда полином.
- 5. Выберете из предложенных вариантов тот, который отражает условие существования производной функции в точке x_0 :
 - a) $f'(x_0) \neq 0$;
 - b) $f'(x_0-0) > f'(x_0+0)$;

	e) производная в точке x_0 существует всегда.				
	6. Найдите $\frac{\partial z}{\partial x}$ для функции $z = ye$	$\frac{x}{y}$.			
	a) $xye^{\frac{x}{y}}$ b) $xe^{\frac{x}{y-1}}$				
	c) $e^{\frac{x}{y}}$ d) $ye^{\frac{x}{y}}$				
	е) верного ответа нет.				
	7. Введите пропущенные слова/вы	раже	ния, чтобы приведенное ниже утверждение		
	верным.				
_	рема: интегралы по любым _ »		, окружающим особую точку		
		дейст	ала от данной функции $u = f(x, y, z)$ по гвовать по следующей схеме (установите		
	Выбираем порядок интегриров	вания	, который диктуется видом области		
	интегрирования. Область (V) пр	оеци	ируется на одну из трех координатных		
			м проекцию области (V) – плоскую область		
	(D), и уравнения поверхностей, кото				
	Строим в системе координат <i>ОХҮХ</i>				
			- область (D) на отдельный рисунок и		
			цествляем как в двойном интеграле.		
	Последовательно интегрируя, вычи				
	_		ждой из трех переменных x , y , z , определяя		
	область интегрирования системой в				
	Записываем тройной интеграл в вид	де по	овторного.		
	9. Криволинейный интеграл $\int_{l} P(x, y)$	y, z)a	dx + Q(x, y, z)dy + R(x, y, z)dz - это		
	а) масса материальной кривой;				
		емеш	ении материальной точки вдоль линии в		
силов	вом поле;				
	с) длина кривой;d) центр масс кривой				
	и) центр маес кривон				
10. Д.	ля знакоположительного ряда имеет і	место	равенство $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = l$. Составьте верные		
-	ждения				
	l = 0	A.	Ряд сходится		
	$l=e^{-1}$	B.			
3. 4.	l=1	C.	Ряд может сходиться, а может и расходиться. Требуются		
4.	l = e		дополнительные исследования.		
			, ,		

c) $f'(x_0 - 0) \neq f'(x_0 + 0)$; d) $f'(x_0 - 0) = f'(x_0 + 0)$; Ответ.

Olber.					
1	2	3	4		

Ключи: 1 c), 2 d), 3 c), 4 a), 5 d), 6 c), 7 простым контуром; равны между собой) 8 2-1-3-6-4-5), 9 b), 10 1-A;2-A;3-C;4-B).

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Примеры контрольных работ (ИОПК 1.1, ИОПК 1.2, ИПК 1.3):

Контрольная работа по теме «Введение в анализ»

I. Вычислить пределы

1.
$$\lim_{n \to \infty} \frac{\sqrt{n^2 - 4n}}{\sqrt[3]{2n^3 + 1}}$$
;

2.
$$\lim_{n\to\infty} \frac{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}}{n-1}$$
;

3.
$$\lim_{x \to 1} \frac{\sqrt{1+x^2}}{2x}$$
;

4.
$$\lim_{x \to \infty} \frac{6x^2 + 2x}{3x^2 + 1}$$
;

5.
$$\lim_{x\to 2} \frac{\sqrt{x^2-3}-1}{x-2}$$
;

6.
$$\lim_{x \to 0} \frac{x^2}{1 - \cos x}$$
;

7.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1} \right)^{\frac{x^2+1}{x}};$$

8.
$$\lim_{x\to 0} \frac{\ln(x^2+2) - \ln 2}{x^2}$$
;

9.
$$\lim_{x \to 0} \frac{e^{2x} - e^x}{x}$$
;

10.
$$\lim_{x\to 2} \frac{\sin(2-x)}{\sqrt{2x}-2}$$
.

II. Определить порядок б. м. $\alpha(x)$ при $x \to 0$ относительно x:

1.
$$\alpha(x) = \ln(1 + \sqrt[3]{x^2 \cdot \lg x})$$
,

2.
$$\alpha(x) = \sqrt{2x+1} - 1$$
.

III. Найти точки разрыва функции, указать их характер. Построить график функции в окрестности точек разрыва:

1.
$$f(x) = \begin{cases} 0, ec\pi u \ x < 0, \\ x^2, ec\pi u \ 0 \le x < 1, \\ x + 2, ec\pi u \ x \ge 1. \end{cases}$$
 2. $y = \frac{\frac{1}{2^{1-x}}}{\frac{1}{1+2^{1-x}}}, 3. y = \frac{1}{x^2 - 4}.$

2.
$$y = \frac{2^{\frac{1}{1-x}}}{\frac{1}{1+2^{\frac{1}{1-x}}}}$$
, 3. $y = \frac{1}{x^2 - 4}$.

Контрольная работа по теме «Дифференциальное исчисление функции одного переменного»

І. Найти производные следующих функций:

1.
$$y = (e^{\cos x} + 3x)^2$$
; 2. $3^x + 3^y = x - 2y$; 3. $y = (\operatorname{tg} 2x)^{\operatorname{ctg}(\sqrt{\frac{x}{2}})}$;

II. Найти вторую производную $\frac{d^2y}{dx^2}$:

1.
$$y = \frac{x^2}{x^2 - 1}$$
, 2.
$$\begin{cases} x = \cos(t/2), \\ y = t - \sin t. \end{cases}$$
 3. $y = \sin(x - y)$

III. . Пользуясь правилом Лопиталя найти пределы:

1.
$$\lim_{x \to 1} \left(\frac{x^2}{x - 1} - \frac{1}{\ln x} \right)$$
 2.
$$\lim_{x \to 1 - 0} (\sin \pi x)^{\cos \frac{\pi x}{2}}$$

IV Провести полное исследование функции $y = xe^{-x}$ и построить её график

Контрольная работа по теме «Неопределенный интеграл»

$$1.\int \frac{xdx}{\sqrt{2x^2+3}}.$$

$$2. \int \frac{\sin 3x dx}{\sqrt[3]{\cos^4 3x}}$$

1.
$$\int \frac{xdx}{\sqrt{2x^2 + 3}}$$
. 2. $\int \frac{\sin 3xdx}{\sqrt[3]{\cos^4 3x}}$. 3. $\int \frac{dx}{arctgx(1 + x^2)}$. 4. $\int \frac{e^{2x}dx}{e^{2x} + 2}$. 5. $\int x\sqrt{1 - x^2}dx$. 6. $\int (1 + x)\sin 2x dx$.

$$4. \int \frac{e^{2x}dx}{e^{2x}+2}$$

$$5. \int x\sqrt{1-x^2} dx$$

6.
$$\int (1+x)\sin 2x \, dx$$

7.
$$\int \frac{x dx}{(x+1)(x+3)(x+5)}$$
 8. $\int \frac{\sin^4 x}{\cos^6 x} dx$ 9. $\int \frac{\sqrt{x} dx}{\sqrt{\sqrt{x^3} + 4}}$

$$8. \int \frac{\sin^4 x}{\cos^6 x} dx$$

9.
$$\int \frac{\sqrt{x}dx}{\sqrt{\sqrt{x^3}+4}}$$

Контрольная работа по теме «Определенный интеграл»

$$1. \int_{0}^{\pi} (2x + \sin 2x) dx$$

3.
$$\int_{\frac{1}{2}}^{1} \sqrt{4x - 2} dx$$

$$\int_{0}^{1} xe^{x}$$

$$4. \int_{1}^{3} \frac{dx}{x^2 + x}$$

5. Вычислить несобственные интегралы или установить их расходимость:

a)
$$\int_{3}^{\infty} \frac{x^2 dx}{x^2 + 4}$$
 6)
$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx$$

$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx$$

6. Вычислить площадь фигуры, ограниченной линиями: a) $y = x^3$, $y = x^2$, x = -2, x = 1.

a)
$$y = x^3$$
, $y = x^2$, $x = -2$, $x = 1$.

$$ρ = 3-2\cos φ$$
, $β = \frac{1}{2}$

7. Вычислить длину дуги кривой y = 1- ln sinx, от x = 0 до $x = \frac{\pi}{4}$

Контрольная работа по теме «Ряды»

1. Исследовать сходимость рядов:

a)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n\sqrt{n^3+1}}$$
; b) $\sum_{n=1}^{\infty} \left(\frac{3n-1}{4n+1}\right)^{n^2/2}$.; c) $\sum_{n=1}^{\infty} \frac{n^n}{n! \cdot 3^n}$. d) $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n^2}}-1}{1-\cos\frac{1}{n}}$.

e)
$$\sum_{n=1}^{\infty} \sin(n^3 + 4)$$
. e) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(n+1) \cdot 10^n}$.

2. Найти область сходимости ряда

$$\sum_{n=1}^{\infty} \frac{7^{n+1}}{n(n+2)(n+3)} (x-10)^n \cdot \sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{(n+1)\sqrt{\ln^3 (n+1)}} \cdot \sum_{n=1}^{\infty} \frac{(x-2)^n}{10^n + 20^n}.$$

3. Доказать равномерную сходимость по определению на [0;1] $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{20n-7}.$

Функции нескольких переменных.

- 1. Найти область определения функций. Сделать чертеж. Дать ответ на вопрос: входят ли границы в эту область $z = \ln y + \sqrt{y x}$.
- 2. Найти указанные производные

$$u = x^2 y^2 z + 2x - 3yz$$
. $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, $\frac{\partial^2 u}{\partial x \partial z} = ?$

3. Найти частные производные от неявно заданной функции

$$z = \sin^2 x + \cos^2 y + \operatorname{tg}^2 z$$
. $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y} = ?$

- 4. Найти наибольшее и наименьшее значение функции $z = x^2 xy + y^2$ в области $|x| + |y| \le 1$
- 5. Проверить, удовлетворяет ли функция $u = x^2 F\left(\frac{x}{z}, \frac{x}{y}\right)$ уравнению $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 2u$.
- 6. Определить, в каких точках поверхности $x^2 + y^2/5 z^2 = 1$ нормаль параллельна вектору $\vec{s} = \{2, \sqrt{5}, 2\}$

Контрольная работа по теме «Кратные интегралы»

1. Изменить порядок интегрирования:

$$\int_{0}^{1} dx \int_{x-4}^{4-x} f(x, y) dy$$

2. Расставить границы интегрирования

$$\iint\limits_D f(x, y) dx dy$$
 D: $y = x$, $y = 2x$, $x+y=6$

- 3. Найти площадь фигуры, ограниченной линиями: $x^2 + y^2 2x = 0$, y = x, y = 0.
 - 4. Найти объем тела, ограниченного указанными поверхностями: $x^2+y^2-8x=0, \quad x^2+y^2=z^2, \quad z=0.$
 - 5. Найти массу тела, ограниченного поверхностями : $x^2+z^2=1, \quad y=0, \quad y=1, \text{ если} \quad \rho(x,y,z)=k(x^2+y^2+z^2).$

Контрольная работа по теме «Элементы векторного анализа»

7. Вычислить криволинейный интеграл 1^{го} рода

$$\int_{(L)} (1+x^2) dl$$
, где $L: x^2 + y^2 = ay$.

8. Вычислить работу силового поля. Проверить зависит ли интеграл от траектории интегрирования? Если не зависит, то упростить вычисления.

$$\int_{(L)} (xy-1)dx + x^2y^2dy, \text{ где } L:AB; A(1,0); B(0,2).$$

3. Вычислить поверхностный интеграл $\iint_{(S)} dS$, где **S** – часть плоскости

x + y + z = a, заключенная в первом октанте.

- 1. Найти поток векторного поля $\vec{A} = 4\vec{i} 9\vec{j}$ через внешнюю сторону поверхности параболоида вращения $y = x^2 + z^2$, огранич. плоскостью y = 4, при $x \le 0, z \ge 0$.
- 5. $\vec{A} = (x + \ln|z|)\vec{i} + (y + \ln|x|)\vec{j} + (z + \ln|y|)\vec{k}$. div $\vec{A} = ?$, rot $\vec{A} = ?$

Контрольная работа по теме «Функции комплексного переменного»

- 1. а) Найти все значения корня: $\sqrt[3]{-2}$. Результат вычислений представить в алгебраической форме.
 - б) Представить в алгебраической форме: $(-1-i)^{4i}$.
- 2. а) Найти коэффициент растяжения и угол поворота в точке $z_0 = 1 i$ при отображении $\omega = z^2$.
 - б) Проверить функцию на аналитичность: $\omega = (z^*)^2 \cdot z$.
- 3. Найти аналитическую функцию f(z) = U + iV по известной действительной части и значению $f(z_0)$: $U(x,y) = x^3 3xy^2$; f(i) = -i.
- 4. Вычислить интеграл: $\int z^2 \, {\rm Im} \, z dz$, где $\, L$ отрезок прямой от точки $\, z_1 = 0 \, ,$ до точки $\, z_2 = 1 2i \, .$

5. Вычислить интеграл:
$$\int_{L} \frac{dz}{z^3 (z-2i)^2}$$
, где $L:|z-2i|=1$.

Контрольная работа по теме «Комплексные ряды. Вычеты»

- 1. Разложить функцию $f(z) = \frac{z}{(z-1)(z^2+2z-3)}$ в ряд Лорана с центром в $z_0 = 1$ в кольце |z-1| > 4.
- 2. Найти и построить область сходимости ряда: $\sum_{n=1}^{\infty} \frac{\cos(in)}{(z+i+1)^n} + \sum_{n=0}^{\infty} \frac{(z+i+1)^n}{(2n+i)(4+3i)^n}.$
- 3. Вычислить следующие интегралы:

a)
$$\oint_{|z-2|=4} \frac{zdz}{e^z + e^2}$$
 6) $\int_{|z|=2} \frac{exp(1/z) + 1}{z} dz$ B) $\int_{-\infty}^{\infty} \frac{\cos \pi x dx}{x^2 + 4x + 5}$

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

% выполнения задания	Соответствие традиционной оценке	Определение оценки
90%÷100%	«Отлично»	Отличное понимание предмета, всесторонние знания,
		отличные умения и владение опытом практической
		деятельности, необходимые результаты обучения
		сформированы, их качество оценено количеством баллов,
		близким к максимальному
70% - 89%	«Хорошо»	Достаточно полное понимание предмета, хорошие
		знания, умения и опыт практической деятельности,
		необходимые результаты обучения сформированы,
		качество ни одного из них не оценено минимальным
		количеством баллов
55% - 69%	«Удовл.»	Приемлемое понимание предмета, удовлетворительные
		знания, умения и опыт практической деятельности,
		необходимые результаты обучения сформированы,
		качество некоторых из них оценено минимальным
		количеством баллов
0% - 54%	«Неудовл.»	Результаты обучения не соответствуют минимально
		достаточным требованиям

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзамен во втором и третьем семестрах проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Первая часть представляет собой два вопроса по теоретическому материалу, проверяющих ИОПК-1.2, ИОПК-1.3. Ответы на вопросы первой части даются в развернутой форме.

Вторая часть содержит два вопроса, проверяющий ИОПК-1.2, ИОПК-1.3, оформленные в виде практических задач. Ответ на вопросы второй части предполагает решение задач и краткую интерпретацию полученных результатов.

Примерный перечень теоретических вопросов

- 1. Вопрос 1. Множества. Сравнение множеств по числу элементов. Супремум и инфимум, свойства.
- 2. Вопрос 2. Определение предела последовательности. Бесконечно малые последовательности, свойства бесконечно малых последовательностей. Теоремы о пределе монотонной последовательности.
 - 3. Вопрос 3. Предел функции. Определение.
 - 4. Вопрос 4. Признак Больцано-Коши для функции.
 - 5. Вопрос 5. Сравнение бесконечно больших величин и бесконечно малых величин.
 - 6. Вопрос 6. Связь понятий непрерывности и предела функции.
 - 7. Вопрос 7. Типы разрывов.
- 8. Вопрос 8. Обратная функция, теорема о существовании и монотонности обратной функции.
 - 9. Вопрос 9. Замечательные пределы (с доказательством).
 - 10. Вопрос 10. Типы неопределенных выражений.
 - 11. Вопрос 11. Особые случаи производных.
 - 12. Вопрос 12. Формулы Коши и Лагранжа.
 - 13. Вопрос 13. Дифференциал, теорема и дифференцируемости функции.
 - 14. Вопрос 14. Разложение функций в ряд Тейлора.
 - 15. Вопрос 15. Связь понятия выпуклости с касательной и производной.
 - 16. Вопрос 16. Неопределенный интеграл, определение.
- 17. Вопрос 17. Приемы интегрирования: подведение под знак дифференциала, замена переменной, интегрирование по частям.
- 18. Вопрос 18. Метод неопределенных коэффициентов, интегрирование рациональных дробей.
 - 19. Вопрос 19. Подстановки Эйлера.
 - 20. Вопрос 20. Интегрирование тригонометрических функций.
 - 21. Вопрос 21. Суммы Дарбу. Свойства сумм Дарбу.
 - 22. Вопрос 22. Свойства определенных интегралов с доказательством.
 - 23. Вопрос 23. Длина дуги плоской кривой, определение и вычисление.
 - 24. Вопрос 24. Вычисление площадей.
 - 25. Вопрос 25. Объем тела вращения.
- 26. Вопрос 26. Несобственные интегралы первого рода, практический признак сходимости несобственных интегралов первого рода.
- 27. Вопрос 27 Несобственные интегралы второго рода, практический признак сходимости несобственных интегралов второго рода.
- 28. Вопрос 28. Достаточные признаки сходимости знакоположительных числовых рядов.
- 29. Вопрос 29. Признак сходимости Больцано-Коши, признак Дирихле, признак Абеля для знакопеременных рядов.
- 30. Вопрос 30. Предел функции многих переменных. Повторные пределы, теорема об их равенстве.
 - 31. Вопрос 31. Частные производные функции многих переменных, градиент.
 - 32. Вопрос 32. Ряд Тейлора функции многих переменных.
- 33. Вопрос 33. Необходимое и достаточное условие экстремума функции многих переменных.
 - 34. Вопрос 34. Криволинейные интегралы первого рода: определение, вычисление.
- 35. Вопрос 35. Криволинейные интегралы второго рода: определение, вычисление, векторная форма записи, физический смысл.

- 36. Вопрос 36. Вычисление двойных интегралов по прямоугольной области и по криволинейной трапеции.
 - 37. Вопрос 37. Тройной интеграл определение, вычисление.
 - 38. Вопрос 38. Поверхностный интеграл первого рода определение, вычисление.
 - 39. Вопрос 39. Поверхностный интеграл второго рода определение, вычисление.
 - 40. Вопрос 40. Интеграл от функции комплексного переменного.

Примеры задач:

1. Вычислить предел последовательности:

1)
$$\lim_{n\to\infty} \frac{\sqrt{n^2+1}-\sqrt[3]{3n^3+n-8}}{n-6}$$
, 2) $\lim_{n\to\infty} \frac{1-2+3-...+(2n-1)-2n}{\sqrt{n^2+1}}$, 3) $\lim_{n\to\infty} \frac{2-n}{n+1} + \frac{n\cdot 2^{-n}}{n+2}$,

2. Вычислить предел функции

1)
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^4 - 5x^2 + 3x + 1}$$
, 2) $\lim_{x \to \infty} \frac{x^3}{2x^2 + 1} - \frac{x^2}{2x - 6}$, 3) $\lim_{x \to 2} \frac{\sqrt{1 + x^3} - 3}{x^2 - 3x + 2}$,

4)
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x}-\sqrt[3]{1-x}}{\sqrt{1+x}-\sqrt{1-x}}$$
, 5) $\lim_{x\to \infty} \frac{3^x}{5+3^{x+1}}$, 6) $\lim_{x\to 1} \frac{\sqrt{x}-1}{\sqrt[4]{x}-1}$, 17) $\lim_{x\to 1} \frac{3}{1-\sqrt{x}}-\frac{2}{1-\sqrt[3]{x}}$,

8)
$$\lim_{x\to 0} x \cdot ctg5x$$
, 9) $\lim_{x\to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{e^{x^2} - 1}$, 10) $\lim_{x\to 0} \frac{\sqrt{1 + x \sin x} - \sqrt{\cos 2x}}{tg^2 \frac{x}{2}}$,

11).
$$\lim_{x\to 0} \frac{\ln\cos 5x}{\ln\cos 4x}$$
, 12) $\lim_{x\to 0} (1+6tgx)^{\frac{\sin 2x}{x^2+3x^3}}$,

- 3. Найти точки разрыва функции и определить тип $y(x) = \ln \frac{x^2}{x+1}$,
- 4. Вычислить производные заданных функций

1)
$$y = x(\arcsin x)^2 - 2x + 2\sqrt{1 - x^2}$$
, 2) $y = (\arcsin^2 x)^{\arctan x}$, 3) $y = (\frac{\sin x}{x})^x$

- 5. Найти интеграл, применяя простейшие преобразования $\int \frac{dx}{x\sqrt{4-5\ln x}}$,
- **6.** Найти интеграл, используя интегрирования по частям $\int x^2 e^{3x} dx$.
- 7. Найти интеграл, выделив полный квадрат $\int \frac{(2x+3)dx}{x^2-5x+11}$
- 8. Найти интеграл от рациональных дробей $\int \frac{(2x^2-x)dx}{(x+4)(x^2+5)}$.
- 9. Найти интеграл от тригонометрических функций $\int \frac{\sin^5 x dx}{\cos^3 x}$.
- 10. Вычислить определенные интегралы

1)
$$\int_{1}^{\sqrt{2}} \frac{x dx}{\sqrt{4-x^2}}$$
, 2) $\int_{-3}^{0} (x-2)e^{-\frac{x}{3}} dx$, 3) $\int_{1}^{9} \frac{\sqrt{x} dx}{\sqrt{x}+1}$.

- 11. Найти площадь фигуры, ограниченной линиями $y = x^2 2x$ y = 3x 1.
- 12. Найти объем тела, образованного вращением фигуры вокруг оси OX, ограниченной линиями $y = \sin x$, $0 \le x \le \pi$.

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» ставится в случае демонстрации высокого уровня знаний определений, формулировок теорем и их доказательств, умения решать практические задачи с использованием оптимальных методов и анализировать полученный результат.

Оценка «хорошо» ставится в случае, если студент демонстрирует в целом успешное, но содержащее отдельные ошибки в определениях, формулировках теорем и их доказательствах, способен предложить оптимальный метод решения для практических задач, возможно допускает незначительные ошибки при вычислениях.

Оценка «удовлетворительно» ставится в случае, если студент демонстрирует частичное, фрагментарное владение определениями, формулировками теорем и их доказательствами, способен предложить метод для решения для практических задач, возможно допускает незначительные вычислительные ошибки.

Оценка «неудовлетворительно» ставится в случае, если студент демонстрирует низкий уровень знаний определений, формулировок теорем и их доказательств.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Примеры типовых тестов

1. Установите соответствие между функцией и её дифференциалом

1. Установите соответствие между функцие	и и ее дифференциалом
функция	производная
$y = \sqrt[3]{\sin x}$	$dy = \frac{\cos x}{3\sqrt[3]{\sin^2 x}} dx$
$y = \sqrt{\sin x}$	$dy = \frac{\cos x}{2\sqrt{\sin x}} dx$
$y = \frac{1}{\sqrt{\sin x}}$	$dy = -\frac{\cos x}{2\sqrt{\sin^3 x}} dx$
$y = \frac{1}{\sqrt[3]{\sin x}}$	$dy = -\frac{\cos x}{3\sqrt[3]{\sin^4 x}} dx$
	$dy = \frac{\cos x}{2\sqrt[3]{\sin x}} dx$
	$dy = \frac{1}{2\sqrt{\sin x}} dx$

2. Определите порядок малости бесконечно малой функции $\frac{\ln\left(\frac{1+x^3}{x^3}\right)}{x}$ относительно $\frac{1}{x}$ при $x \to \infty$ K=____.

3. Функция $y = 6x \cdot e^{-2x}$ убывает для значений X

1.
$$x \in (-\infty; 1/2)$$

2.
$$x \in (1/2; +\infty)$$

3.
$$x \in (-\infty; -1/2) \cup (1/2; +\infty)$$

4.
$$x \in (-1/2; +\infty)$$

5.
$$x \in (1/2;0)$$
.

4. Интеграл $\int x^2 e^{2x^3} dx$ равен

1.
$$e^{2x^3} + C$$

$$2.6e^{2x^3} + C$$

$$\frac{1}{3}e^{2x^3}+C$$

$$\frac{1}{6}e^{2x^3} + C$$

5. Укажите верное разложение рациональной дроби $\frac{2x^2+1}{(x^2-4)(x^2+1)}$ на сумму простых дробей с неопределёнными коэффициентами

$$\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x^2-4} + \frac{B}{x^2+1}$$

$$\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{C}{x^2+1}$$

$$\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x^2-4} + \frac{Bx+C}{x^2+1}$$

$$\frac{2x^2+1}{(x^2-4)(x^2+1)} = \frac{A}{x-2} + \frac{B}{x+2} + \frac{Cx+D}{x^2+1}$$

6. Интеграл $\int \frac{dx}{4\cos x + 6\sin x + 5}$ равен

$$\frac{1}{\sqrt{27}} \ln \left| \frac{\lg \frac{x}{2} + 6 - \sqrt{27}}{\lg \frac{x}{2} + 6 + \sqrt{27}} \right| + C$$
1.

$$-\frac{2}{tg\frac{x}{2}+3}+C$$
2.

$$3. \frac{2\left(tg\frac{x}{2}+3\right)^3}{3} + C$$

4.
$$\ln |4\cos x + 6\sin x + 5| + C$$

7. Укажите из предложенных подстановку с помощью которой можно избавится от

иррациональности в интеграле $\int \frac{5\sqrt{x+1}}{(x+1)^2 \cdot \sqrt{x}} dx$

1.
$$x = t^2 - 1$$

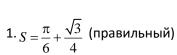
2.
$$x = t^2$$

$$t^2 = \frac{x+1}{x}$$

8.Область интегрирования D ограничена линиями y = 1, y = x, x + y = 4. Расставьте

пределы интегрирования $\int dy \int f(x;y)dx$

9. Найдите площадь области, представленной на рисунке



2.
$$S = \frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

3.
$$S = \frac{\pi}{12} + \frac{\sqrt{3}}{8}$$

4.
$$S = \frac{\pi}{6} + \frac{\sqrt{3}}{2}$$

5.
$$S = \frac{\pi}{3} + \frac{\sqrt{3}}{4}$$

6.
$$S = \frac{\pi}{3} + \frac{\sqrt{3}}{8}$$

10.Вычислите криволинейный интеграл $\int_{L} (y-1)dx + 5xdy$ по прямой L: y=4x+2 от точки

$$M_1(-2;9)$$
 до точки $M_2(0;8)$
Ответ: _____-46_____

11. Для функции z = z(x; y) известно

$$z'_{x}(M) = z'_{y}(M) = 0$$

$$z_{xx}''(M) = 5; \ z_{xy}''(M) = 1; \ z_{yy}''(M) = -2$$

Тогда точка М

является точкой минимума не является точкой экстремума является точкой максимума является стационарной точкой не является стационарной точкой

Информация о разработчиках

Рожкова Светлана Владимировна, д-р физ.-мат. наук, профессор кафедры теории вероятностей и математической статистики, профессор

Шкленник Мария Александровна, кандидат физико-математических наук, ассистент кафедры теории вероятностей и математической статистики ИПМКН ТГУ