Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Базы данных и программные продукты в химической технологии

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Цифровая химия**

Форма обучения **Очная**

Квалификация **Инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А. С. Князев

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен использовать вычислительные методы и адаптировать существующие программные продукты для решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-3.1 Знает стандартные и оригинальные программные продукты, современные вычислительные методы

РООПК-3.3 Умеет применять современные вычислительные методы для обработки данных химического эксперимента, моделирования свойств полимерных и композиционных веществ и материалов, а также процессов с их участием

2. Задачи освоения дисциплины

- Освоить основные программные комплексы в плане понимания специфики прикладного применения.
- Освоить способы подбора программного комплекса для выполнения практических задач.
- Освоить способы последовательной работы с фактическими данными для решения практических задач.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, является обязательной для изучения.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Второй семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: актуальные задачи современной химии, основы системного анализа и моделирование технологических процессов, Основы проектирования химических и нефтехимических производств.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 16 ч.
- -практические занятия: 16 ч.
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Неспециализированные программные пакеты

Тема 1. Математические пакеты программ

Excel. Mathcat. Matlab. Wolfram mathematica. Mapple. Statistica. Minitab.

Разбор основных возможностей программ, целей и задач, решаемых при использовании инструментов.

Тема 2. Базы данных

Excel. Access. SQL

Понятие базы данных, системы управления базами данных. Релиционные/нереляционные СУБД, понятие, отличия, примеры использования.

Тема 3. Программирование

Basic. Fortran. Pithon. Элементы ActiveX.

Введение, отличия, сферы применения. Основные положения и алгоритмы. Примеры решаемых задач.

Раздел 2. Специализированные программные пакеты

Тема 4. Трубопроводы

Olga. PipeSIM. Fronex.

Обзор интерфейсов, преимуществ и недостатков программных продуктов. Примеры задач, решаемых с помощью данных инструментов.

Тема 5. Моделирование XTC

AspenONE Engineering. ChemCAD. AVEVA PRO II.

Основные отличия, достоинства и недостатки программы. Сферы применения в промышленности, обзор примеров применения.

Тема 6. Электронные кульманы

AutoCAD

Обзор основных возможностей, достоинства и недостатки.

Тема 7. Задачи конструирования и 3D моделирования

Пассат. AutoCAD Inventor. Solidworks. КОМПАС-3D.

Основные возможности, отличия, достоинства и недостатки.

Тема 8. МКЭ

ANSYS. COMSOL.

Возможности, отличия, достоинства и недостатки. Разбор задач, решаемых с помощью данных программных продуктов.

Тема 9. BIM

AVEVA. AutoPlant. Revit.

Возможности, отличия, достоинства и недостатки. Разбор задач, решаемых с помощью данных программных продуктов.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости лекций и практических занятий, проведения занятий с презентациями студентов по индивидуальному заданию и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен во втором семестре проводится в устной форме по билетам. Экзаменационный билет состоит из двух частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru/enrol/index.php?id=36095
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Introduction to Software for Chemical Engineers, Second Edition, Edited By Mariano Martín Martín, Copyright Year 2020, ISBN 9781138324213, Published June 25, 2019 by CRC Press, 802 Pages 24 Color & 548 B/W Illustrations
- Introduction to Software for Chemical Engineers, Second Edition, Edited By Mariano
 Martín Martín, Copyright Year 2020, ISBN 9781138324213, Published June 25, 2019 by CRC
 Press, 802 Pages 24 Color & 548 B/W Illustrations
 - б) ресурсы сети Интернет:
 - открытые онлайн-курсы
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Лекционная аудитория, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации.

Аудитория для выполнения практических занятий, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации, а

также персональными компьютерами с установленным пакетом MS Office (MS Word, MS Excel), AspenONE Engineering для выполнения практических заданий (ауд. 402 или 405 бго корпуса НИ ТГУ).

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Норин Владислав Вадимович, ведущий специалист отдела предпроектной подготовки ООО «ИХТЦ», ассистент кафедры неорганической химии ХФ НИ ТГУ;

Решетников Дмитрий Михайлович, начальник отдела предпроектной подготовки OOO «ИХТЦ».