Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Оценочные материалы по дисциплине

Термический анализ

по специальности

04.05.01 Фундаментальная и прикладная химия

Специализация: **Фундаментальная и прикладная химия**

Форма обучения **Очная**

Квалификация **Химик / Химик-специалист. Преподаватель химии**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП В.В. Шелковников

Председатель УМК В.В. Шелковников

Томск - 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен анализировать и интерпретировать результаты химических экспериментов, наблюдений и измерений в различных областях химии;
- ОПК-2. Способен проводить синтез, анализ, изучение структуры и свойств веществ и материалов, исследовать процессы с их участием;
- ОПК-3. Способен применять расчетно-теоретические методы для изучения свойств веществ и процессов с их участием, используя современное программное обеспечение и базы данных профессионального назначения;
- ПК-1. Способен планировать работу и выбирать адекватные методы решения научно-исследовательских задач в выбранной области химии, химической технологии или смежных с химией науках.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК 1.1 Знает теоретические основы неорганической, органической, физической и аналитической химии, применяет их при решении профессиональных задач в других областях химии.
- РООПК 1.2 Умеет систематизировать и интерпретировать результаты экспериментов и расчетно-теоретических работ с использованием теоретических основ традиционных и новых разделов химии
- РООПК 1.3 Умеет грамотно формулировать заключения и выводы по результатам работы
- РООПК 2.2 Знает теоретические основы методов изучения состава, структуры и свойств для грамотного выбора метода исследования
- РООПК 2.3 Умеет проводить стандартные синтезы по готовым методикам, выполнять стандартные операции для определения химического и фазового состава веществ и материалов, а также использовать серийное научное оборудование для изучения их свойств
- РООПК 3.2 Умеет решать расчетно-теоретические задачи химической направленности по разработанным методикам, использовать аппарат теоретической химии и физики для грамотной интерпретации полученных результатов
- РОПК 1.2 Умеет выбирать экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов.

2. Оценочные материалы текущего контроля и критерии оценивания

2.1 Виды оценочных средств

№	Контролируемые темы/разделы	Наименование оценочного средства для текущего контроля	Код индикатора достижения компетенции согласно ОПП
1	Тема 1. Методы термического анализа	Тестирование	РООПК 1.1.
			РООПК 2.2.
2	Тема 2. Термогравиметрия	Практичекское	РООПК 1.1.
		задание,	РООПК 1.2.
		индивидуальное	РООПК 1.3.
		задание	РООПК 2.2.
			РООПК 2.3.

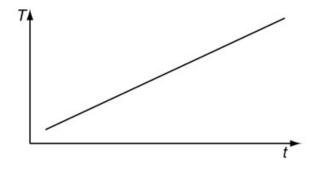
3	Тема 3. Дифференциальный термический	Практичекское	РООПК 1.1.
	анализ. Дифференциальная сканирующая	задание,	РООПК 1.2.
	калориметрия	индивидуальное	РООПК 1.3.
		задание	РООПК 2.2.
			РООПК 2.3.
4	Тема 4. Факторы, влияющие на результаты	Практичекское	РОПК 1.2.
	термоаналитических измерений	задание	
5	Тема 5. Кинетика твердофазных реакций	Практичекское	РООПК 1.1.
		задание,	РООПК 1.2.
		индивидуальное	РООПК 1.3.
		задание	РООПК 2.2.
			РООПК 2.3.
			РООПК 3.2
			РОПК 1.2.

2.2 Содержание оценочных средств

Тестирование проверяет освоение ОПК-1 (РООПК 1.1), ОПК-2 (РООПК 1.2)

Примеры тестовых заданий

1. Соотнесите процесс и тепловой эффект, сопровождающий этот процесс


1) плавление

А) эндотермический Б) экзотермический

- 2) десорбция
- 3) адсорбция
- 4) дегидратация
- 5) окислительная деструкция

1	2	3	4	5
Α	A	Б	A	Б

- 2. Основоположником термического анализа является:
 - 1) У.Ч. Робертс-Остен
 - 2) Н.С. Курнаков
 - 3) А. А. Байков
 - 4) А.Л. Ле-Шателье
 - 5) Р. Аустен
- 3. Выберите режим программы, которому соответствует график изменения температуры

- 1) Изотермическое измерение.
- 2) Динамическое измерение при постоянной скорости нагрева.
- 3) Динамический нагрев, за которым следует охлаждение и второй сегмент нагрева.
 - 4) Изотермическая-динамическая-изотермическая температурная программа
 - 4. Для достижения максимального разрешения необходимо:
 - 1) Снизить скорость нагрева
 - 2) Увеличить скорость нагрева
 - 3) Увеличить массу навески
 - 4) Использовать газ с высоким коэффициентом теплопередачи
 - 5) Использовать тигель из фольги с высокими теплопроводящими свойствами
 - 5. Впишите нужный термин (им.п., ед.ч): измеренная кривая пустого измерительного прибора (либо без образцов и без тиглей или без образцов, с пустыми тиглями) называется <u>нулевая линия</u>

Критерии оценивания:

тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Практическая работа № 1

Описание термограммы термического разложения кристаллогидрата

На основании представленных результатов анализа термической деструкции кристаллогидрата

- определить условия проведения съемки на синхронном термоанализаторе
- -определить количество наблюдаемых на термограмме физико-химических превращений
 - определить энергетику процессов (эко-, эндотермические)
- выделить процессы, идущие с изменением массы, рассчитать изменение массы на каждой ступени разложения
- составить материальный баланс процесса и записать предполагаемые реакции физико-химических превращений, используя литературные данные
 - дать рекомендации по подбору программы дополнительного анализа с целью разделения по температурному диапазону близлежащих последовательных реакций.

Практическое задание 1 формирует освоение ОПК-1 (РООПК 1.1, РООПК 1.2, РООПК 1.3), ОПК-2 (РООПК 2.2, РООПК 2.3).

Критерии оценивания:

Результатом выполнения практической работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента.

Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

Определение условий съемки на синхронном термоанализаторе STA 449 C Jupiter для определения содержания гипса в цементе

- 1. Определить условия съемки на синхронном термоанализаторе STA 449 С Jupiter для определения содержания гипса в цементе (режим измерения, температурный интервал, скорость нагрева, атмосфера, материал тиглей).
- 2. Сформировать заявку на измерение.

Практическое задание 2 формирует освоение ПК-1 (РОПК 1.2).

Критерии оценивания:

Результатом выполнения практической работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента. Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

Практическая работа №3

«Определение кинетических параметров разложения по данным термогравиметрии»

На основании представленных результатов анализа термической деструкции

- 1. Выбрать температурный диапазон и стадию разложения для расчета кинетических параметров (энергии активации, порядка реакции) методом Метцгера-Горовица;
- 2. Рассчитать степень превращения для выбранного температурного интервала;
- 3. С помощью стандартных программ провести линеаризацию экспериментальных данных в координатах выбранных математических уравнений зависимости степени превращения от температуры;
- 4. Определить значения величины порядка реакции и энергии активации.
- 5. Сравнить значения энергии активации с литературными данными.

Практическое задание 3 формирует освоение ОПК-1 (РООПК 1.1, РООПК 1.2, РООПК 1.3), ОПК-2 (РООПК 2.2, РООПК 2.3), ОПК-3 (РООПК 3.2), ПК-1 (РОПК 1.2)

Критерии оценивания:

Результатом выполнения лабораторной работы является отчет.

Оценка «зачтено» выставляется студенту, если в отчете отражены все пункты плана отчета, приведены все необходимые расчеты, проведен анализ результатов эксперимента.

Оценка «незачтено» выставляется студенту, если в отчете не отражен анализ экспериментальных данных, не отражены все пункты плана.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет проводится по результатам выполнения и защиты индивидуального задания, проверяющего ОПК-1 (РООПК 1.1, РООПК 1.2, РООПК 1.3), ОПК-2 (РООПК 2.1, РООПК 2.3), ОПК-3 (РООПК 3.2), ПК-1 (РОПК 1.2).

Пример индивидуального задания:

Описать термограмму термического разложения MnCl₂×4H₂O и рассчитать кинетические параметры реакции дегидратации.

- 1. На основании представленных результатов термического анализа соли $MnCl_2 \times 4H_2O$ (термограмма выдается преподавателем), выполненного на синхронном термоанализаторе STA 449 C Jupiter:
 - определить условия проведения съемки на синхронном термоанализаторе
- -определить количество наблюдаемых на термограмме физико-химических превращений
 - определить энергетику процессов (эко-, эндотермические)
- выделить процессы, идущие с изменением массы, рассчитать изменение массы на каждой ступени разложения
- составить материальный баланс процесса и записать предполагаемые реакции физико-химических превращений, используя литературные данные
- дать рекомендации по подбору программы дополнительного анализа с целью разделения по температурному диапазону близлежащих последовательных реакций.
- выбрать температурный диапазон и стадию разложения для расчета кинетических параметров (энергии активации, порядка реакции) методом Метцгера-Горовица;
- -обосновать выбор термогравиметрических, термографических данных для обработки;
 - рассчитать степень превращения для выбранного температурного интервала;
- -с помощью стандартных программ провести линеаризацию экспериментальных данных в координатах выбранных математических уравнений зависимости степени превращения от температуры;
 - определить значения величины порядка реакции и энергии активации.

Зачет получает студент, который на защите индивидуального задания показывает знание понятийного аппарата дисциплины «Термический анализ»; умение анализировать ход термоаналитических кривых; характеризует этапы термической деструкции вещества, используя справочную, учебную и научно-техническую литературу, владеет методами расчета кинетических параметров процессов. Студент может допускать некоторые неточности в расчетах или описании термограмм, которые он исправляет сразу после наводящих вопросов преподавателя.

Студент, не выполнивший индивидуальное задание, не умеющий провести сопоставительный анализ хода термоаналитических кривых (ТГ-, ДТГ-, ДТА- и ДСК-кривых) для описания процессов термической деструкции веществ и материалов не получает зачета по дисциплине.

Информация о разработчиках

Селюнина Лилия Александровна, кан. хим. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент

Рецензент:

Халипова Ольга Сергеевна, кан. техн. наук, кафедра неорганической химии Национального исследовательского Томского государственного университета, доцент.