Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Рабочая программа дисциплины

Непрерывные математические модели

по направлению подготовки

01.04.02 Прикладная математика и информатика

Направленность (профиль) подготовки: **Информационная безопасность**

Форма обучения Очная

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.Ю. Матросова

Председатель УМК С.П. Сущенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-5 Способен управлять получением, хранением, передачей, обработкой больших данных.
- УК-1 Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-5.1 Осуществляет мониторинг и оценку производительности обработки больших данных
- ИПК-5.2 Использует методы и инструменты получения, хранения, передачи, обработки больших данных
- ИПК-5.3 Разрабатывает предложения по повышению производительности обработки больших данных
- ИУК-1.1 Выявляет проблемную ситуацию, на основе системного подхода осуществляет её многофакторный анализ и диагностику.
- ИУК-1.2 Осуществляет поиск, отбор и систематизацию информации для определения альтернативных вариантов стратегических решений в проблемной ситуации.
- ИУК-1.3 Предлагает и обосновывает стратегию действий с учетом ограничений, рисков и возможных последствий.

2. Задачи освоения дисциплины

- Освоить аппарат дисциплины «Непрерывные математические модели» и ознакомить студентов с современными методами построения и анализа непрерывных математических моделей.
- Научиться применять понятийный аппарат и непрерывные математические модели для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль «Академический модуль»

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам «Математический анализ», «Дифференциальные уравнения», «Теория вероятностей и математическая статистика», «Численные методы».

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

-лекции: 16 ч.

-лабораторные: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Введение. Основные определения и понятия.

Краткое содержание темы. Классификация математических моделей и методов моделирования. Классификация методов построения моделей. Идентификация. Характеристики математической модели. Классификация и виды непрерывных математических моделей. Области применения непрерывных математических моделей.

Тема 2. Анализ качества непрерывных математических моделей.

Краткое содержание темы. Анализ устойчивости непрерывных математических моделей без запаздываний. Анализ устойчивости непрерывных математических моделей с запаздываний. Робастная устойчивость непрерывных математических моделей. Слабая и сильная теоремы Харитонова. Аттракторы динамических систем. Определение особых точек. Анализ аттракторов. Применение аттракторов при передаче скрытой информации.

Тема 3. Численные методы исследования непрерывных математических моделей.

Краткое содержание темы. Методы Эйлера и Рунге-Кутта. Устойчивость метода (сходимость). Жесткие задачи. Метод шагов для моделей с запаздываниями. Метод Кранка-Никольсона. Применение ППП (Matlab, Mathcad) для численного решения обыкновенных дифференциальных уравнений.

Тема 4. Примеры непрерывных математических моделей.

Краткое содержание темы. Основные законы, используемые при построении непрерывных математических моделей. Непрерывная математическая модель вертикального движения ракеты. Модель электропривода. Модель робота-манипулятора. Модель хищник-жертва. Модель делового цикла. Динамическая модель фирмы. Модель миграции населения. Модель управляемого портфеля ценных бумаг.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в среде электронного обучения iDO https://lms.tsu.ru/course/view.php?id=9662
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План лабораторных занятий по дисциплине.
- 1. Идентификация параметров модели делового цикла. Анализ качества поведения модели.

- 2. Анализ устойчивости непрерывных математических моделей без запаздываний. Анализ устойчивости непрерывных математических моделей с запаздываний. Робастная устойчивость непрерывных математических моделей. Аттракторы динамических систем. Определение особых точек. Анализ аттракторов. Применение аттракторов при передаче скрытой информации.
- 3. Численные методы исследования непрерывных математических моделей. Анализ устойчивости метода (сходимость). Жесткие задачи. Метод шагов для моделей с запаздываниями. Метод Кранка-Никольсона. Применение ППП (Scilab, Mathcad) для численного решения обыкновенных дифференциальных уравнений.
- 4. Основные законы, используемые при построении непрерывных математических моделей. Построение и исследование конкретных непрерывных математических моделей. бумаг.
 - г) Методические указания по проведению лабораторных работ.

Студенту рекомендуется при подготовке к выполнению лабораторной работе ознакомиться с заданием к лабораторной работе, выполнить проработку разделов лекции и рекомендованной литературы.

д) Методические указания по организации самостоятельной работы студентов.

Самостоятельная (внеаудиторная) работа студентов состоит в проработке лекций и изучении рекомендованной литературы, подготовке к лабораторным работам, к контрольным вопросам и тестам.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Юдович В. И. Математические модели естественных наук. Издательство "Лань", 2022. 336 с. URL: https://e.lanbook.com/book/210581
- Горчаков Л.В. Введение в компьютерное моделирование. Учебное пособие. Томск: ТГУ, 2013. 103 с. URL:

https://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000466012

- б) дополнительная литература
- Воробейчиков С.Э. Математическое моделирование экстремальных событий в актуарной и финансовой математике. Издательский Дом Томского государственного университета, 2014. 75 с. URL:

http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000480253

- Смагин В.И., Решетникова Г.Н. Численные методы. Томск: Томск: ИДО ТГУ, 2007. URL: https://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000243997
- Масловская А. Г. Детерминированные математические модели. Амурский государственный университет, 2020. 73 с. URL: https://e.lanbook.com/book/156505
 - в) ресурсы сети Интернет:
 - Открытые онлайн-курсы
 - Журнал «Эксперт» http://www.expert.ru
- Издательство «Лань» [Электронный ресурс]: электрон.-библиотечная система.
 Электрон. Дан. СПб., 2010. URL: https://e.lanbook.com/
- ScienceDirect [Electronic resource] / Elsevier B.V. URL: https://www.sciencedirect.com/
- Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. URL: https://www.elibrary.ru/defaultx.asp

– Общероссийская Сеть КонсультантПлюс Справочная правовая система http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - математические пакеты Mathcad, Scilab;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных:
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории, оборудованные персональными ЭВМ с операционной системой MS Windows и установленными математическими пакетами Mathcad, Scilab.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Смагин Валерий Иванович, д.т.н, профессор, профессор кафедры прикладной математики НИ ТГУ