Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Оценочные материалы по дисциплине

Большой практикум (генетика, клеточная и синтетическая биология)

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1 Способен применять знание биологического разнообразия и использовать методы наблюдения, идентификации, классификации, воспроизводства и культивирования живых объектов для решения профессиональных задач.
- ОПК-2 Способен применять принципы структурно-функциональной организации, использовать физиологические, цитологические, биохимические, биофизические методы анализа для оценки и коррекции состояния живых объектов и мониторинга среды их обитания.
- ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.1 Ориентируется в разнообразии живых объектов
- ИОПК-1.2 Демонстрирует навыки наблюдения, идентификации и классификации живых объектов при решении профессиональных задач
- ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- устный опрос;
- отчеты по лабораторным работам;
- доклады;
- тесты:
- контрольный опрос.

ИОПК-2.1

Устный опрос

Модуль «Цитологический раздел большого практикума»

Оцениваются остаточные базовые знания о строении корня растений, растительных клеток, хромосом, хронологии митоза и мейоза, которые обучающийся приобрёл при освоении дисциплин «Цитология и гистология» и «Анатомия и морфология высших растений». Проводится перед практической частью соответствующего раздела модуля «Цитологический раздел большого практикума».

Примеры вопросов для проведения устного опроса:

- 1. Строение корня растения.
- 2. Строение растительной клетки.
- 3. Хронология митоза.
- 4. Хронология мейоза.
- 5. Морфология метафазных хромосом.
- 6. Кариотип.
- 7. Флуоресцентная *in situ* гибридизация.

Модуль «Генетический раздел большого практикума»

Оцениваются остаточные знания о нуклеиновых кислотах и белках и методах их изучения, которые обучающийся приобрел при освоении дисциплин «Генетика», «Анализ биополимеров».

Примеры вопросов для проведения устного опроса:

- 1. Принцип работы ПЦР.
- 2. Принцип работы ПЦР в реальном времени.
- 3. Принцип гибридизационных методов и области их применения.
- 4. Ферменты для молекулярного клонирования.
- 5. Спектрофореграммы ПЦР в реальном времени.
- 6. Ферменты для ПЦР.
- 7. Третичная структура белка.
- 8. Химическая организация нуклеиновых кислот.

Модуль «Клеточные культуры»

Оцениваются остаточные базовые знания о строении клеток, методах их изучения и методах культивирования клеток, которые обучающийся приобрёл при освоении дисциплин «Цитология и гистология» и «Методы клеточной биологии». Проводится в форме устного опроса на первом занятии модуля «Клеточные культуры» Большого практикума.

Примеры вопросов для проведения устного опроса:

- 1. Особенности строения животной клетки.
- 2. Взаимодействие клеток с внеклеточным матриксом.
- 3. Морфологические признаки гибели клеток.
- 4. Механизмы изменения формы клеток при делении.
- 5. Витальные красители.
- 6. Флуоресцентные красители для живых клеток.
- 7. Примеры использования культуры клеток в цитологических исследованиях.

Выполнение задания оценивается по 5-ти балльной шкале.

Критерии оценивания:

Оценка	Критерии оценки	
5 баллов (отлично)	Дан правильный, полный ответ на вопрос.	
4 балла (хорошо)	Дан правильный, неполный ответ на вопрос.	
3 балла (удовлетворительно)	Дан частично правильный ответ на вопрос.	
2 балла (неудовлетворительно)	Ответ на вопрос не дан.	

ИОПК-1.2, ИПК-1.1

Отчет по лабораторной работе

Отчет по лабораторной работе выполняется письменно в соответствии с планом лабораторной работы. В отчете должны быть представлены цель и задачи работы, подробно описаны этапы выполнения работы. Результаты работы должны быть представлены в виде описания, рисунков, расчетов, таблиц в зависимости от темы лабораторной работы. Отчет должен содержать заключение с фиксацией основных результатов и их анализом.

План лабораторных работ по модулю *«Цитологический раздел большого практикума»*:

- 1. Вводная теоретическая часть по методам исследования хромосом растений. Приготовление реактивов и красителей для получения препаратов хромосом растений. Предобработка и посев семян на чашки Петри, черенкование.
- 2. Предфиксационная обработка и фиксация корневых апикальных меристем. Оценка качества красителей.
- 3. Приготовление временных давленых препаратов хромосом растений из корневых апикальных меристем и пыльников. Определение чисел хромосом в соматических и генеративных клетках культурных и дикорастущих растений. Знакомство с базами данных по числам хромосом растений.
- 4. Получение препаратов метафазных хромосом для кариотипирования. Микрофотографирование.
- 5. Представление докладов по программному обеспечению для кариотипирования растений. Кариотипирование растения при помощи программного обеспечения.
- 6. Представление и обсуждение индивидуальных отчетов по кариотипированию растения в виде доклада с презентацией.
- 7. Получение воздушно-высушенных препаратов хромосом растений.
- 8. Дифференциальное окрашивание митотических хромосом растений при помощи DAPI. Локализация консервативных повторяющихся последовательностей рибосомальной ДНК на митотических хромосомах растений при помощи флуоресцентной *in situ* гибридизации (FISH).
- 9. Обсуждение принципов тестирования химических соединений на генотоксичность. Постановка опыта по тестированию химического вещества при помощи тест-системы на *Allium cepa* (*Allium*-тест).
- 10. Фиксация материала для тестирования на генотоксичность химического соединения. Получение и анализ цитологических препаратов (определение митотического интекса, микроядерный тест). Регистрация результатов тестирования.
- 11. Анализ цитологических препаратов (ана-телофазный метод). Регистрация результатов тестирования. Статистическая обработка и интерпретация результатов.
- 12. Представление и обсуждение отчетов по тестированию химического вещества на генотоксичность в форме докладов с презентацией.

План лабораторных работ по модулю «Генетический раздел большого практикума» соответствует темам модуля «Генетический раздел большого практикума», п. 8 РПД.

- 1. Обсуждение плана занятий. Ознакомление с приборной базой, материалами и реактивами для работы, ресурсами сети интернет. Техника безопасности.
- 2. Обсуждение протокола выделения ДНК и РНК. Особенности выделения РНК. Обсуждение специфики выделения нуклеиновых кислот из из клеток животных, растений, грибов и бактерий. Получение лизирующего буфера. Гомогенизация материала и лизис. Экстракция нуклеиновых кислот из гомогената. Очистка нуклеиновых кислот. Оценка количества выделенной нуклеиновой кислоты и ее чистоты с помощью спектрофотометра. Написание отчета.
- 3. Обсуждение протокола разработки праймеров для ARMS-ПЦР. Разработка праймеров для ARMS-ПЦР. Обсуждение разработки протокола ARMS-ПЦР. Разработка протокола ARMS-ПЦР. Проведение реакции амплификации ARMS-ПЦР. Регистрация полученных результатов с помощью электрофореза в агарозном геле. Написание отчета.
- 4. Обсуждение протокола разработки проб для Таq-Мап РВ-ПЦР. Разработка проб для Таq-Мап РВ-ПЦР. Обсуждение разработки протокола Таq-Мап РВ-ПЦР. Разработка протокола Таq-Мап РВ-ПЦР. Проведение реакции амплификации Таq-Мап РВ-ПЦР. Регистрация полученных результатов с помощью анализа спектрограмм флюориметра. Написание отчета.

- 5. Обсуждение протокола разработки праймеров для LAMP. Разработка праймеров для LAMP. Обсуждение разработки протокола LAMP. Разработка протокола LAMP. Проведение реакции амплификации LAMP. Регистрация полученных результатов с помощью электрофореза в агарозном геле. Написание отчета.
- 6. Обсуждение протокола количественной РВ-ПЦР. Проведение реакции амплификации РВ-ПЦР. Регистрация полученных результатов с помощью анализа спектрограмм флюориметра. Расчет относительного количества нуклеиновых кислот. Написание отчета.
- 7. Обсуждение протокола получения давленных суховоздушных препаратов политенных хромосом. Приготовление давленных суховоздушных препаратов политенных хромосом. Обсуждение протокола мечения ДНК-проб. Проведение мечения ДНК проб и их очистка. Обсуждение протокола FISH. Проведение гибридизации. Проведение отмывки препаратов. Микроскопия препаратов. Написание отчета.
- 6. Вводная по теории выравнивания последовательностей нуклеотидов. Обсуждение интерфейса программы Ugene. Обсуждение формата данных о последовательностях биополимеров. Поиск нуклеотидных последовательностей для выравнивания. Выравнивание последовательностей с использованием различных протоколов. Построение древа. Написание отчета.
- 7. Вводная по технологии молекулярного клонирования. Обсуждение протокола лигирования нуклеиновой кислоты в вектор. Проведние реакции лигирования. Очистка реакции. Трансформация бактерий и «бело-голубая селекция». Оценка эффективности встройки целевого продукта в вектор.

План лабораторных работ по модулю «Клеточные культуры»:

- 1. Обсуждение плана занятий. Повторение материала об основных этапах культивирования клеток, методах соблюдения асептических условий, составе культуральных сред из курса «Методы клеточной биологии».
- 2. Ознакомление с приборной базой культуральной комнаты. Ознакомление с культуральной посудой и лабораторными принадлежностями, используемыми для культивирования клеток. Приготовление культуральных сред.
- 3. Размораживание клеток. Подсчет количества клеток и % выживших после замораживания/размораживания клеток методом окрашивания красителем трипановым синим и анализа в камере Горяева. Разведение клеточной суспензии до определенной концентрации. 1-ый пассаж.
- 4. Анализ клеточных линий с использованием инвертированного микроскопа методами светлого поля и фазового контраста. Сравнение методов микроскопирования. Определение конфлюэнтности у адгезионной линии и клеточной кластеризации у суспензионной линии. Снятие клеток адгезионной линии с помощью раствора трипсина. Разведение клеточной суспензии до определенной концентрации. 2-ой пассаж.
- 5. Микроскопический анализ клеток. Учет численности клеток и % живых клеток после окрашивания красителем трипановым синим в камере Горяева. Статистическая обработка результатов. Сравнение количественных данных после размораживания клеток и после 2-ого пассажа.
- 6. Представление и обсуждение полученных результатов в форме доклада с презентацией.

План лабораторных работ по модулю «Микробиологический раздел большого практикума»:

1. Обсуждение плана занятий. Потребности микроорганизмов. Питательные среды и условия культивирования. Классификация и способы приготовления питательных

- сред. Расчёт состава сред. Расчет потребностей микроорганизмов в питательные субстраты методом математического моделирования с использованием биомоля.
- 2. Стерилизация: методы и способы стерилизации. Строение автоклава. Подготовка посуды, сред, инструментов к стерилизации. Методы контоля стерилизации. Проведение стерилизации.
- 3. Методы посева на твердые элективные среды.
- 4. Учет численности микроорганизмов методом Коха. Статистическая обработка результатов.
- 5. Метод прямого учета численности микроорганизмов в камере Горяева. Статистическая обработка результатов.
- 6. Рост микроорганизмов на плотных питательных средах. Описание морфологии колоний.
- 7. Исследование морфологии бактерий при микроскопировании. Приготовление препаратов живых микроорганизмов для светового микроскопирования. Методы окраски по Граму, окраска жгутиков и т.д.
- 8. Исследование морфологии микроскопических грибов при микроскопировании.
- 9. Рост микроорганизмов на жидких питательных средах. Описание характера роста. Нахождение удельной скорости роста, периода удвоения.
- 10. Зависимость удельной скорости роста от концентрации лимитирующего субстрата. Нахождение экономического коэффициента. Траты на поддержание.

Выполнение задания оценивается по 5-ти балльной шкале.

Критерии оценивания:

Оценка	Критерии оценки	
5 баллов (отлично)	В отчете представлены цель и задачи работы, подробно описаны этапы выполнения работы. Отчет содержит заключение с фиксацией основных результатов и их анализом.	
4 балла (хорошо)	В отчете представлены цель и задачи работы, описаны этапы выполнения работы. В отчете не полностью отражены результаты работы.	
3 балла	В отчете частично описаны этапы выполнения работы, не	
(удовлетворительно)	полностью отражены результаты работы.	
2 балла (неудовлетворительно)	Лабораторная работа не выполнена	

ИОПК-1.2

Доклад

В докладе отражаются основные результаты соответствующего модуля лабораторных работ. Доклад представляется после завершения лабораторных работ модуля и сопровождается презентацией.

Выполнение задания оценивается по 5-ти балльной шкале.

Критерии оценивания:

Оценка	Критерии оценки		
5 баллов (отлично)	В докладе представлены основные результаты всех		
	лабораторных работ модуля. Проведен анализ результатов.		
	Доклад проиллюстрирован схемами, графиками,		
	микрофотографиями, позволяющими оценить качество		

	выполненных работ и анализа полученных результатов. Сформулированы заключение/выводы.		
4 балла (хорошо)	В докладе представлены основные результаты всех лабораторных работ модуля. Проведен частичный анализ результатов. Доклад частично проиллюстрирован схемами, графиками, микрофотографиями. Сформулированы неполные заключение/выводы.		
3 балла (удовлетворительно)	В докладе представлены основные результаты от 50 до 100 % лабораторных работ модуля. Проведен частичный анализ результатов. Доклад частично проиллюстрирован схемами, графиками, микрофотографиями. Сформулированы не полностью или не сформулированы заключение/выводы.		
2 балла	Доклад не представлен или представлено < 50 % результатов		
(неудовлетворительно)	работы.		

ИОПК-1.1, ИОПК-2.1, ИОПК-1.2, ИПК-1.1

Контрольный опрос

Контрольный опрос проводится в виде устного опроса с использованием билетов. Каждый билет содержит 2 вопроса. Проводится на последнем занятии соответствующего модуля. Вопросы билетов выбираются из общего списка вопросов, отражающего формирование определенных компетенций, и соответствуют темам конкретного модуля.

Вопросы для оценки знаний по дисциплине «Большой практикум» (модули «Цитологический раздел большого практикума», «Генетический раздел большого практикума», «Клеточные культуры», «Микробиологический раздел большого практикума»):

ИОПК-1.1 Ориентируется в разнообразии живых объектов

- 1. Понятие кариотипа. Разнообразие кариотипов.
- 2. Первичные, диплоидные, иммортализованные клеточные линии.
- 3. Типы контаминации.
- 4. Нуклеиновые кислоты и их типы.
- 5. Политенные хромосомы и их особенности

ИОПК-1.2 Демонстрирует навыки наблюдения, идентификации и классификации живых объектов при решении профессиональных задач

- 1. Использование растений в тестировании химических соединений на генотоксичность.
 - 2. Методы определения мертвых и живых клеток.
 - 3. Методы борьбы с контаминацией.
- 4. Методы определения живых объектов по последовательности нуклеотидов их геномов.
 - 5. Методы определения живых объектов по локализации генов на хромосомах.

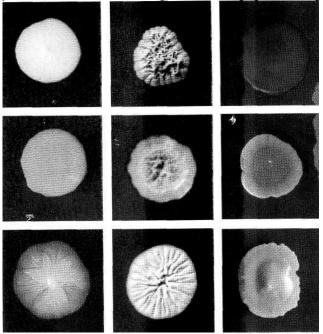
ИОПК-2.1 Демонстрирует понимание принципов структурно-функциональной организации живых систем

- 1. Подготовка растительного материала для цитогенетического анализа.
- 2. Использование консервативных повторяющихся последовательностей ДНК для сравнительного анализа кариотипов.
- 3. Состав культуральных сред. Влияние компонентов сред на жизнеспособность клеток.
 - 4. Морфологические признаки состояния клеточной культуры.

- 5. Особенности работы с адгезивными клеточными линиями.
- 6. Особенности работы с суспензионными клеточными линиями.
- 7. Методы приготовления препаратов хромосом.
- 8. Методы выделения нуклеиновых кислот.
- ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами
 - 1. Программное обеспечение для кариотипирования растений.
- 2. Кариоморфологический анализ. Основные параметры кариотипа. Идиограмма, кариограмма.
- Цитогенетические методы тестирования химических соединений на генотоксичность.
- 4. Получение временных и постоянных цитологических препаратов. Реактивы, красители, методики.
- 5. Основные этапы культивирования клеток (размораживание, культивирование, пассирование, замораживание).
 - 6. Метод прямого учета численности клеток в камере Горяева.
- 7. Метод фазово-контрастной микроскопии (область применения, особенности строения микроскопа).
 - 8. Требования к организации культуральной комнаты. Основные приборы.
 - 9. Лигирование и трансформация в методе молекулярного клонирования
- 10. Флюоресцентная микроскопия для физического картирования нуклеотидных последовательностей.

Выполнение задания оценивается по 5-ти балльной шкале.

Критерии оценивания:


Оценка	Критерии оценки		
5 баллов (отлично)	В процессе ответа студент демонстрирует теоретические знания по темам билета. Демонстрирует знание основных цитологических, генетических и микробиологических методов, методов культивирования животных клеток.		
4 балла (хорошо)	В процессе ответа студент демонстрирует неполные теоретические знания по темам билета. Демонстрирует неполное знание основных цитологических, генетических и микробиологических методов, методов культивирования животных клеток.		
3 балла (удовлетвор ительно)	В процессе ответа студент демонстрирует фрагментарные знания по темам билета. Испытывает затруднения с описанием основных цитологических, генетических и микробиологических методов, методов культивирования животных клеток.		
2 балла (неудовлетв орительно)	Обучающийся не ответил на вопросы билета. Не имеет практических и теоретических знаний в рамках тем модуля.		

Оценивание результатов обучения по каждому модулю производится вычислением среднего арифметического числа от оценок, полученных обучающимся за выполнение каждого типа заданий, предусмотренных в конкретном модуле.

Варианты тестовых заданий

1. Выберите колонию, соответствующую следующему описанию (ИОПК-1.1, ИОПК-1.2, ИПК-1.1.):

- Колония округлая, гладкая, мучнистая, с ровным краем.
- Складчатая неправильная форма, непрозрачная с морщинистой поверхностью
- Округлая непрозрачная колония с радиально исчерченной поверхностью
- Конусовидная колония неправильной формы, непрозрачная с гладкой поверхностью

- 2. Согласно классификации, принятой в России (СП 3.3686-21), возбудителя чумы *Yersinia pestis* относят (ИОПК-1.1, ИОПК-1.2)
 - А) І группе
 - Б) II группе
 - B) III группе
 - Г) IV группе
- 3. Согласно классификации групп опасности инфекционных агентов ВОЗ возбудителя чумы *Yersinia pestis* относят (ИОПК-1.1, ИОПК-1.2)
 - А) І группе
 - Б) II группе
 - B) III группе
 - Г) IV группе
- 4. Режимные лаборатории (изолированные) с высоким индивидуальным и низким общественным риском по степени биологической опасности, принятой в России, относят к (ИОПК-1.1, ИОПК-1.2)
 - А) І группе риска
 - Б) ІІ группе риска
 - В) III группе риска
 - Г) IV группе риска
- 5. Лаборатории с низким индивидуальным и общественным риском, согласно ВОЗ, относят к (ИОПК-1.1, ИОПК-1.2)
 - А) І уровню биологической безопасности
 - Б) ІІ уровню биологической безопасности
 - В) III уровню биологической безопасности
 - Г) IV уровню биологической безопасности

- 6. "Грязная" ("заразная") зона микробиологической лаборатории включает (ИОПК-1.2, ИПК-1.1)
- А) помещение для приема и учета материала, помещение для приготовления питательных сред, помещение для мойки и стерилизации питательных сред, гардероб и душевую
- Б) помещение для приема и учета материала, помещение (помещения) для проведения исследований, помещение поддержания температуры (инкубаторная), помещение для обеззараживания материала
- В) помещение для приготовления питательных сред, помещение для мойки и стерилизации питательных сред, гардероб и душевую, помещение (помещения) для проведения исследований
- Г) помещение для приема и учета материала, помещение (помещения) для проведения исследований, помещение поддержания температуры (инкубаторная), помещение для обеззараживания материала, помещение для переодевания в спецодежду
- 7. Для стерилизации требуется поддержание температур на уровне 160 °C в течение не менее двух часов, 170 °C в течение 90 минут и 180 °C в течение 45–60 минут в случае применения данного метода стерилизации (ИПК-1.1)
 - А) сухим жаром
 - Б) влажным жаром
 - В) влажным жаром под давлением
 - Г) радиационной
- 8. Наиболее распространённым средством контроля процесса стерилизации является использование видов *Geobacillus* или *Bacillus* поскольку они (ИОПК-1.2, ИОПК-2.1)
 - А) широко распространены в природе
 - Б) вызывают заболевания теплокровных
 - В) образуют эндоспоры
 - Г) образуют цисты
 - 9. *Neisseria* spp относят к (ИОПК-2.1)
 - А) Грамположительным коккам
 - Б) Грамположительным палочкам
 - В) Грамотрицательным коккам
 - Г) Грамотрицательным палочкам
 - 10. Salmonella spp относят к (ИОПК-2.1)
 - А) Грамположительным коккам
 - Б) Грамположительным палочкам
 - В) Грамотрицательным коккам
 - Г) Грамотрицательным палочкам

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно на 60~% вопросов.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Промежуточная аттестация в форме зачета с оценкой проводится в седьмом семестре на основе оценок, полученных обучающимся за модули «Цитологический раздел большого практикума» и «Генетический раздел большого практикума». Вычисляется как среднее арифметическое число с округлением в большую сторону (в пользу студента).

Промежуточная аттестация в форме экзамена проводится в восьмом семестре на основе оценок, полученных обучающимся за модули «Цитологический раздел большого практикума», «Генетический раздел большого практикума», «Клеточные культуры» и «Микробиологический раздел большого практикума». Вычисляется как среднее арифметическое число с округлением в большую сторону (в пользу студента).

Структура экзамена соответствует компетентностной структуре дисциплины, поскольку на каждом этапе освоения дисциплины проводится оценка индикаторов достижения компетенций путем оценивания результатов выполнения заданий в рамках каждого модуля. Итоговая оценка отражает достижение всех запланированных индикаторов – результатов обучения.

Текущий контроль напрямую влияет на промежуточную аттестацию, поскольку оценка за промежуточную аттестацию является средним арифметическим числом оценок, полученных при оценивании текущего контроля.

В случае невыполнения более 50 % лабораторных работ обучающийся сдает устный экзамен, билеты которого содержат 4 вопроса (по одному вопросу из списка контрольных вопросов по каждому модулю). При этом итоговая оценка за экзамен не может превышать 3 балла (удовлетворительно), поскольку обучающимся не освоены базовые для данной дисциплины компетентности ОПК-2 и ПК-1, приобретаемые при выполнении лабораторных работ.

Перечень вопросов промежуточной аттестации (Микробиологический раздел) (ИОПК-1.1, ИОПК-1.2, ИОПК-2.1, ИПК-1.1):

- 1. Виды микробиологических лабораторий, группы микроорганизмов по степени биологической опасности
- 2. Требования к организации микробиологической лаборатории I и II групп опасности
- 3. Организация и структура микробиологической лаборатории
- 4. Правила работы в "грязной" зоне
- 5. Методы стерилизации и дезинфекции
- 6. Устройство и принцип работы автоклава
- 7. Оценка эффективности стерилизующего агента
- 8. Методы контроля эффективности процесса стерилизации
- 9. Мероприятия по обеззараживанию отработанных лабораторных материалов
- 10. Понятие питательной среды и требования к ним
- 11. Основные компоненты питательных сред
- 12. Классификация питательных сред
- 13. Техника приготовления питательных сред
- 14. Требования к воде для приготовления питательных сред
- 15. Срок хранения разлитых питательных сред
- 16. Контроль качества питательных сред
- 17. Основные методы подсчета микроорганизмов
- 18. Методика учета общего количества микроорганизмов
- 19. Прямые микроскопические методы учета микробной численности
- 20. Оценка численности суспензии по плотности культуры (Турбидиметрический метод).
- 21. Методика учета численности живых микроорганизмов
- 22. Техника рассева по поверхности плотной питательной среды в чашках Петри (метод Коха)
- 23. Метод посева в плотную питательную среду в чашки Петри
- 24. Метод мембранного фильтра
- 25. Метод наиболее вероятного числа (НВЧ)

- 26. Быстрые методы цчета численности микроорганизмов (эпифлуоресцентный метод, АТФ-тестирование, метод импеданса, манометрический метод)
- 27. Лабораторное культивирование микроорганизмов
- 28. Получение чистой культуры
- 29. Хранение микробных культур
- 30. Морфологические признаки бактериальных колоний
- 31. Морфологические признаки грибных колоний
- 32. Методы окраски в микробиологии
- 33. Общие принципы методов окрашивания. Виды красителей, используемые для окрашивания
- 34. Различные типы методов окрашивания (простое, дифференциальное, кислотноустойчивое, специальное окрашивание).
- 35. Просмотр микроорганизмов в микроскоп. Раздавленная капля. Висячая капля.
- 36. Окрашивание живых клеток.
- 37. Основные этапы процедуры посмертного окрашивания микроорганизмов: простое окрашивание, негативное окрашивание.
- 38. Принцип окрашивания по Граму. Процедура микроскопического исследования мазка, окрашенного по Граму.
- 39. Микроскопия дрожжеподобных культур.
- 40. Микроскопия мицелиальных грибных культур.

Промежуточная аттестация в форме экзамена проводится на основе устного ответа студентов по экзаменационному билету при учете оценки за текущий контроль.

Оценка за текущий контроль максимально может достигать 60 баллов (тест).

При формировании устного ответа во время сдачи экзамена обучающимся необходимо продемонстрировать знания, полученные как во время лабораторных занятий, так и при самостоятельном проработке тем курса.

Критерии и шкалы оценивания устного ответа

Критерий	Описание	Шкала оценивания
Знание теоретической	В процессе ответа студент	Да – 20 баллов.
части курса.	демонстрирует теоретические	Частично – 1–19 баллов.
	знания по теме билета.	Нет – 0 баллов.
Владение основными	Студент грамотно использует в	Да – 10 баллов.
понятиями.	своей речи основные	Частично – 1–9 баллов.
	определения и термины,	Нет – 0 баллов.
	изученные в курсе.	
Владение	Студент связывает теоретические	Да – 10 баллов.
практическими	знания с практическими во время	Частично – 1–9 баллов.
методами.	ответа, подкрепляет ответ	Нет – 0 баллов.
	знаниями и умениями,	
	полученные во время	
	лабораторных занятий.	
1		1

Оценку «отлично» получают студенты, набравшие 91–100 баллов на экзамене при учете баллов за выполнение заданий текущего контроля, оценку «хорошо» получают студенты, набравшие 76–90 баллов на экзамене, оценку «удовлетворительно» получают студенты, набравшие 60–75 баллов на экзамене, оценку «неудовлетворительно» получают студенты, набравшие менее 60 баллов.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Теоретические вопросы:

1. Типы контаминации. Методы выявления контаминации. ИОПК-1.1, ИПК-1.1

Ответ должен содержать определение контаминации. Должны быть перечислены типы контаминации (контаминация клетками другой линии, бактериями, грибами, вирусами). Должны быть охарактеризованы методы выявления контаминации: визуальный анализ культуральной среды (помутнение, ослизнение, изменение цвета индикатора рН), микроскопический анализ, посеве на жидкие и твердые бактериологические питательные среды, ПЦР, электронная микроскопия.

2. Типы клеточных линий: первичные, диплоидные, иммортализованные. ИОПК-1.1 Ответ должен содержать определение и примеры первичных, диплоидных и иммортализованных клеточных линий. Должна быть дана общая характеристика этих линий.

3. Основные этапы работы с клеточными линиями. ИОПК-1.2, ИПК-1.1

Ответ должен содержать информацию об этапах проведения размораживания клеток, об основных подходах в культивировании и пассировании клеток, о применяемых подходах в замораживании клеток.

4. Особенности работы с адгезивными и суспензионными клеточными линиями. ИОПК-2.1, ИОПК-1.2, ИПК-1.1

Ответ должен содержать определение, какие клеточные линии являются адгезивными и суспензионными. Должны быть перечислены условия культивирования этих линий (какие приборы и культуральный пластик используются для культивирования, в чем особенность проведения пассажей).

5. Понятие кариотипа и его разнообразие у растений и животных. ИОПК-1.1, ИОПК-2.1.

Ответ должен содержать определение кариотипа (хромосомного набора), описание разнообразия кариотипов по числу, размерам и морфологии хромосом.

6. Современные принципы описания кариотипа. ИОПК-2.1, ИПК-1.1.

Ответ должен содержать информацию о программном обеспечении для кариотипирования, описание основных кариометрических параметров (число хромосом, центромерный и плечевой индексы, длина набора хромосом, индексы асимметрии кариотипа и т. д.), принципы классификации хромосом.

7. Цитогенетические методы оценки генотоксичности химических соединений. ИОПК-2.1, ИПК-1.1.

Ответ должен содержать описание принципов метафазного, ана-телофазного анализа и микроядерного теста, области их применения.

8. Нуклеиновые кислоты и их типы. ИОПК-1.1.

Ответ должен содержать отличительные особенности НК от других биополимеров, особенности химической структуры, в том числе с учетом различных типов. Связь химической структуры НК и методов анализа.

9. Политенные хромосомы и их особенности. ИОПК-1.1.

Ответ должен содержать информацию о том, что такое хромосомы, особенностей организации политенных хромосом и причины такой организации. Практическое использование политенных хромосом в генетическом анализе.

10. Методы определения живых объектов по последовательности нуклеотидов их геномов. ИОПК-1.2.

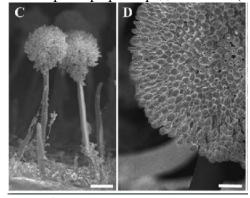
Ответ должен содержать информацию о разнообразии методов анализа нуклеотидных последовательностей, их преимуществах и недостатках при определении видов.

11. Методы определения живых объектов по локализации генов на хромосомах. ИОПК-1.2.

Ответ должен содержать информацию о разнообразии методов локализации нуклеотидных последовательностей, их преимуществах и недостатках при определении вилов.

12. Методы приготовления препаратов хромосом. ИОПК-2.1.

Ответ должен содержать информацию о разнообразии методов приготовления препаратов хромосом, их преимуществах и недостатках при физическом картировании.


13. Методы выделения нуклеиновых кислот. ИОПК-2.1.

Ответ должен содержать информацию о разнообразии методов выделения нуклеиновых кислот, особенностях выделения нуклеиновых кислот из клеток разных групп организмов.

- 14. Лигирование и трансформация в методе молекулярного клонирования ИПК. 1.1. Ответ должен содержать информацию о последовательностях действий при лигировании нуклеиновых кислот и объяснение значения этих действий.
 - 15. Флюоресцентная микроскопия для физического картирования нуклеотидных последовательностей. ИПК-1.1.

Ответ должен содержать информацию о последовательностях действий при физическом картировании нуклеотидных последовательностей и объяснение значения этих действий.

Тест
1. На фотографии представлены (ИОПК-1.1)

- а) Половые структуры микромицета
- б) Половые структуры дрожжеподобного организма
- в) Органы эндогенного бесполого размножения микромицета
- г) Органы экзогенного бесполого размножения плесневого гриба ответ: г
- 2. Для идентификации *Mycobacteria* spp., т.е. *M. tuberculosis* и *M. leprae*, используют следующий метод (ИОПК-1.1)
 - а) Окраска по Граму

- б) Дифференциальная окраска эндоспор
- в) Дифференциальная окраска цист
- г) Кислотно-устойчивое окрашивание ответ: г
- 3. Как называют бактерии, лишенные клеточной стенки (ИОПК-1.2)
 - а) L-формы
 - б) R-формы
 - в) Грамотрицательные
 - г) Бактерии с капсулами

ответ: а

- 4. Выберите род бактерий, относящийся к санитарно-показательной микрофлоре (ИОПК-1.2)
 - a) Bacillus
 - б) Pseudomonas
 - B) Proteus
 - г) Candida

ответ: в

- 5. Актиномицеты отличаются от грибов (ИОПК-2.1)
 - а) Формированием на твердой среде воздушного мицелия
 - б) Одноклеточным строением
 - в) Врастанием колоний в питательную среду
 - г) Формированием конидиеносцев ответ: б
- 6. pH питательной среды, используемой для учета численности микроскопических грибов составляет (ИОПК-2.1)
 - a) 4,5-5,5
 - б) 5,5–6,5
 - B) 6,5-7,0
 - г) 7,0–7,5

ответ: а

- 7. Большое количество веществ (аминокислоты, витамины, сыворотки и т.п.) не могут быть простерилизованы термическим способом. Какой современный метод стерилизации можно применять? (ИПК-1.1)
 - а) Автоклавирование
 - б) Тиндализация
 - в) Кипячение
 - г) Фильтрование

ответ: г

- 8. После автоклавирования в колбах (объём 500 мл с 300 мл среды) на дне вертикального автоклава не расплавился агар. С чем может быть связана данная ошибка процедуры стерилизации? (ИПК-1.1)
 - а) Неправильный упаковочный материал
 - б) Неправильный объём среды в колбе
 - в) Неверное размещение колб в автоклаве
 - г) Не полное удаление холодного воздуха ответ: г

Информация о разработчиках

Артемов Глеб Николаевич, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ («Генетический раздел большого практикума»).

Ананьина Татьяна Викторовна, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ («Клеточные культуры»).

Минаева Оксана Модестовна, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ («Микробиологический раздел большого практикума»).

Митренина Елизавета Юрьевна, кандидат биологических наук, доцент кафедры генетики и клеточной биологии БИ ТГУ («Цитологический раздел большого практикума»).