Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: Декан физического факультета С.Н. Филимонов

Оценочные материалы по дисциплине Physical fields and forces in biological systems Физические поля в биологических системах

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки
Physics Methods and Information Technologies in Biomedicine
«Физические методы и информационные технологии в биомедицине»

Форма обучения Очная

Квалификация **Магистр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.П. Демкин

Председатель УМК О.М. Сюсина

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

 ОПК-3 – способен применять знания в области информационных технологий, использовать современные компьютерные сети, программные продукты и ресурсы информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет») для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки.

Результатами освоения дисциплины являются следующие индикаторы достижения

- ИОПК-3.1. Использует специализированные Интернет-ресурсы для поиска научной информации и анализа трендов развития наук.
- ИОПК-3.2. Использует современное программное обеспечение для анализа научных данных и подготовки научных презентаций.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- практические занятия (семинарские занятия);
- лабораторные работы.

Примерная тематика семинарских занятий (проверяемые ИОПК-3.1, ИОПК -3.2):

- Семинарское занятие № 1 «Применение лазеров в медицине».
- Семинарское занятие № 2 «Фотодинамическая терапия. Фотосенсибилизаторы».

Семинарское занятие № 1 «Применение лазеров в медицине»(2 часа). Вопросы:

- Принцип работы лазера. Типы лазеров.
- Какими параметрами лазерного излучения можно управлять?
- Действие лазерного луча на организм с человеком.

Сценарий проведения семинарского занятия с технологией смешанного обучения:

- 1. Студенты группы, записанные на курс, получают по электронной почте задание: самостоятельно изучить главу учебника Избранные главы к курсу _Физические поля и их действие на биосистемы .pdf
 - 2. В разделе учебника представлен список тем для рефератов.
- 3. Каждый студент выбирает тему для реферата. Изучает самостоятельно с помощью электронных ресурсов материалы темы и готовит презентацию и доклад. Староста группы назначается координатором программы зум конференции, создает папку в Google хранилище и следит, чтобы темы докладов и рецензий не повторялись. Возможна подготовка доклада в команде.
 - 4. Студент загружает презентацию в Google хранилище.
- 5. Староста уточняет дату (ZOOM) семинарского занятия, согласует со студентами группы последовательность и время выступления, назначает руководитель заседания конференции.
- 6. Каждый студент должен подготовить по одному вопросу для выступающего заранее. Выбор темы для рецензии и согласование в Google документах.
- 7. После проведения ZOOM конференции каждый студент пишет рецензию к одному из рефератов, оценивая как размещенные на форуме материалы, так и выступление на конференции. Рецензии размещаются в Google документах. Студенты знакомятся с отзывами. Происходит рефлексия. Выбор лучшего выступления.
- 8. Студенту преподаватель высылает по электронной почте научную статью, студенту необходимо понять смысл исследования и ответить на вопрос: какая лазерная си-

стема используется. Затем преподаватель оценивает ответ.

Инструкция для студента:

- 1. Изучить главу учебника Избранные главы к курсу _Физические поля и их действие на биосистемы_.pdf. Определить непонятные термины, составить глоссарий, определить типы и характеристики лазеров и лазерных систем, используемых в медицине. Посмотреть электронные ресурсы.
- 2. В разделе задания к главе выбрать тему реферата и занести в программу в папке Google документов для зум конференции.
 - 3. Подготовка презентации.
 - 4. Загрузка презентации в Googlexранилище
 - 5. Согласование со старостой времени доклада. Выбор руководителя заседания.
- 6. Просмотр и критический анализ всех презентаций, составление вопросов к докладчикам. Выбор темы для рецензии. Согласование в Google документах.
- 7. Написание рецензии. Знакомство с рецензиями других студентов. Студент может оставить свои комментарии в Google хранилище.
 - 8. Изучение статьи и ответ на вопрос оставляется в Google папке.

Критерии оценивания

Критерий	0 баллов	1 балл	2 балла	
Определение	Не определена	Определена хотя	Определены все	
основных	хотя бы одно	бы одна	характеристики	
характеристики	характеристика	характеристика	лазерного	
лазерного	лазерного	лазерного	излучения	
излучения	излучения	излучения		
Описание	Нет понимания	Определены два	Определены все	
основных частей	основных частей	или три элемента	элементы лазерных	
лазерных систем	лазерных систем	лазерных систем	систем	
Вредные факторы	Не выявлены	Приведены 1 или 2	Приведены и даны	
лазеров	вредные факторы	вредных фактора	понятия вредных	
			факторов	
Описание	Не описана	Нет понимания	Полное описание	
характеристик	лазерная система	почему	лазерной системы и	
лазерной системы	для лечения	используется	понимание почему	
для лечения	заболевания	данная лазерная	она используется	
конкретного		система для	для лечения	
заболевания		лечения	заболевания	
		заболевания		
Применение	Не определены	Слабо определены	Критическое	
лазеров в	лазеры, которые	характеристики	осмысление	
диагностике	применяются в	лазеров, которые	применения	
заболеваний	диагностике	используются в	лазеров для	
	заболеваний	диагностике	диагностик	
		заболеваний		

Семинарское занятие № 2 (2 часа). «Фотодинамическая терапия. Фотосенсибилизаторы».

Вопросы:

- Фотодинамическая терапия. Основные недостатки и преимущества.
- Фотосенсибилизаторы.

Литература по темам семинаров:

- 1. Поисковые системы Google (google.com)
- 2. Ресурсы Научной библиотеки ТГУ http://lib.tsu.ru/ru/node/1290

Примерные темы лабораторных работ с примерами заданий (проверяемые ИОПК-3.1, ИОПК -3.2):

- Лабораторная работа № 1 «Измерение спектров флуоресценции галловой кислоты».
- Лабораторная работа № 2 «Регистрация спектров катодолюминесценции дистиллированной воды и водных растворов фенола».

Лабораторная работа №1 «Измерение спектров флуоресценции галловой кислоты» *Примеры заданий:*

- приготовление образца для исследования.
- регистрация спектров поглощения и флуоресценции.
- построение и обработка спектров.
- анализ спектральных данных.
- построение зависимостей интенсивности поглощения и флуоресценции от концентрации вещества.
 - определение силы осциллятора и времени жизни электронных состояний.
 - построение схемы Яблонского.

Литература по теме лабораторного занятия

- 1. Чайковская О.Н., Безлепкина Н.П. Лабораторная работа "Фотолиз сульфагуанидина в воде": методические указания /сост.: Томск: Издательство Томского государственного университета, 2023.-33 с.
- 2. Чайковская О.Н., Бочарникова Е.Н., Безлепкина Н.П. Лабораторные работы «Методы люминесцентного анализа»: методические указания. Томск: Издательский Дом Томского государственного университета, 2024.-25 с.

Лабораторная работа № 2 «Регистрация спектров катодолюминесценции дистиллированной воды и водных растворов фенола».

Примеры заданий:

- ознакомиться с работой установки типа КЛАВИ;
- приготовить водные растворы фенола;
- зарегистрировать спектры катодолюминесценции дистиллированной воды при облучении 50-ю импульсами электронов;
- зарегистрировать спектры катодолюминесценции водного раствора фенола (C=10-3 моль/л) при облучении до 50-ти импульсов электронов;
- построить и сравнить полученные спектры катодолюминесценции воды и водного раствора фенола.

Литература по теме лабораторного занятия

Чайковская О.Н., Бочарникова Е.Н., Безлепкина Н.П. Лабораторные работы «Методы люминесцентного анализа»: методические указания. Томск: Издательский Дом Томского государственного университета, 2024. – 25 с.

Темы рефератов (планируются в часах самостоятельной работы студентов)

- 1. Круговой дихроизм и оптическое вращение. Исследование инсулина.
- 2. Исследование жира с помощью спектроскопии ослабленного полного отраже-

ния.

- 3. Поглощательные характеристики биологических молекул (триптофан, каротин, гуанин, цитозин, тимин и др.).
 - 4. Тушение флуоресценции молекулярным кислородом.
 - 5. Флуоресцентный спектр сыворотки человека.
 - 6. Экспериментальное определение времени жизни флуоресценции.
 - 7. Поляризация амфифлафина.
 - 8. Определение внутриклеточного кальция с помощью флуоресцентной метки.
 - 9. Флуоресцентная метка ДНК 2-аминопурин.
 - 10. Взаимодействие Кризена и гуминовых веществ с помощью флуоресценции.
 - 11. Флуоресцентные мембранные зонды для визуализации и нейронауки.
- 12. Фотохромные индикаторы кальция на основе реверсивно переключаемых флуоресцентных белков.
- 13. Multicomponent Quantum Chemistry: Integrating Electronic and Nuclear Quantum Effects.
 - 14. Molecules driven by light: Electron and nuclear dynamics.
 - 15. Электроннаяструктурабиологических систем.
 - 16. Действие высоэнергетического излучения на живые организмы.
 - 17. Effects of the environment upon the properties of Ca cation.
- 18. Temperature-sensitive fluorescence decay kinetics of Thioflavin T derivatives in glycerol.
 - 19. Photochromic Labels as a New Challenge for Nanophotonics and Medicine.
- 20. Features two-photon microscopy for analysis fluorescent properties of elastin fibers rats in vivo.
- 21. The study of jung's module variations in a phantom model of lymphedematous tissue using optical coherent tomography.

Требования к реферату

В реферате на основе всестороннего анализа литературы, интернет-источников магистрант должен максимально полно и глубоко исследовать выбранную тему, с учетом общей направленности программы обучения. В целом, при оформлении реферата (текста, рисунков, таблиц, формул) следует ориентироваться на требования ОСТ 29.115-88 «Оригиналы авторские и текстовые издательские. Общие технические требования». Объем реферата должен составлять не менее 10 страниц формата А-4, представляемой в электронной форме (формат doc, rtf или pdf). Обязательно указывается список использованных источников.

Характерными показателями развития самостоятельности у студента в результате освоения дисциплины являются: теоретическое осмысление изучаемого материала, накопление необходимых умений и навыков, интерес к процессу создания продукта собственной самостоятельной деятельности, умение провести презентацию созданного продукта, умение отстаивать собственную точку зрения или предложенный вариант решения проблемы, рефлексия своей деятельности и результата.

Критерии оценивания:

Текущий контроль по дисциплине проводится путем контроля посещаемости, оценки отчетов по лабораторным работам, ответов в устной форме во время проведения семинара, реферата.

Балльная оценка текущего контроля успеваемости студента по данной дисциплине составляет максимум **100 баллов**.

Основным критерием балльной оценки текущего контроля успеваемости является оценка качества ответа студента по содержанию лабораторной работы, семинара,

проектного задания (в форме реферата) (полнота и точность ответа, содержательность суждений/ решений практических задач, практическое использование полученных знаний, умений, убедительность и доказательность ответа, владение профессиональным языком).

Индикаторы балльной оценки лабораторной работы:

- 0-5 баллов ответы на теоретические вопросы по теме работы не содержат ошибок/ с ошибками;
- 0-5 баллов ход работы представлен корректно, подробно, с приведением выводов/ содержит неточности, упущения;
 - 0-5 баллов расчеты содержат ошибки /без ошибок.
 - 0-5 баллов отчет оформлен по требованиям/с нарушением требований.

Максимально за проверку отчета по лабораторной работе – 20 баллов.

Текущий контроль фиксируется в форме контрольной точки не менее одного раза в семестр.

Таблица 2.1

№	Вид контроля	Количество	Количество	Сумма
п/п			баллов за 1	
			ед. контроля	
1.	Посещение лекций	6	1	6
2.	Работа на семинаре	2	2	4
3.	Выполнение лабораторных работ	2	20	40
4.	Выполнение реферата	1	50	50
	ИТОГО			100

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзамен в третьем семестре проводится в устной форме по билетам. Каждый экзаменационный билет состоит из двух теоретических вопросов по одной из тем дисциплины. Продолжительность экзамена 1,5 часа.

К экзамену допускаются только те студенты, кто удовлетворительно выполнили все лабораторные работы и практические задания.

Первые и вторые вопросы билетов проверяют формирование ОПК-3 в соответствии с индикаторами ИОПК-3.1, ИОПК-3.2. Ответы даются в развернутой форме.

Примерный перечень теоретических вопросов:

- 1. Физические поля. Источники физических полей.
- 2. Явление флуоресценции. Стоксов сдвиг в протеине.
- 3. Биологическое действие тепловой энергии. Действие электрических токов.
- 4. Флуоресцентные пробы.
- 5. Информация молекулы от поглощения и флуоресценции.
- 6. Действие на биоструктуры токов с разными динамическими характеристиками.
- 7. Биохимическиефлуорофоры.
- 8. Влияние магнитных полей на биологические объекты.
- 9. Действие переменных магнитных полей на биологические среды. Спектрофотометр.
- 10. Электронный парамагнитный резонанс.

- 11. Ядерный магнитный резонанс.
- 12. Типы физических полей.
- 13. Биологические системы. Акустические поля.
- 14. Перенос энергии от тирозина к триптофану.
- 15. Характеристикиионизирующегоизлучения.
- 16. Влияние акустических полей на биологические объекты.
- 17. Влияние электромагнитного излучения в оптическом диапазоне.
- 18. Фотофизические процессы и фотохимические реакции в возбужденных электронных состояниях.
- 19. Поглощениесветабиомолекулой.
- 20. Спектры поглощения и химическая структура биологически важных соединений

Оценивание ответа студента на экзамене:

Оценка	Критерий оценивания		
	Б	Д	P
5			
4			
3			

Полный развернутый ответ или реферат выполнен
Неполный ответ
Фрагментарный ответ
Отсутствие ответа или реферат не выполнен

Здесь: Б – вопросы по билету; Д – дополнительные вопросы; P–реферат; 5– отлично; 4 – хорошо; 3 – удовлетворительно.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тест

Задание 1

Что такое катодолюминесценция?

- а) физическое явление, заключающееся в свечении (люминесценции) вещества, облучаемого быстрыми электронами
- b) физическое явление, заключающееся в свечении (люминесценции) вещества, облучаемого быстрыми протонами

- с) физическое явление, заключающееся в свечении (люминесценции) вещества, облучаемого быстрыми молекулами
- d) физическое явление, заключающееся в свечении (люминесценции) вещества, облучаемого быстрыми полями

Задание 2

«Спектры люминесценции сложных молекул не зависят от...»

- а) прибора
- b) частоты света возбуждения
- с) вещества
- d) растворителя

Задание 3

Биолюминесценция - это

- а) видимое глазом свечение некоторых бактерий, простейших, ракообразных, червей, моллюсков, рыб; она обусловлена определенными ферментативными реакциями
- б) невидимое глазом свечение некоторых бактерий, простейших, ракообразных, червей, моллюсков, рыб; она обусловлена определенными ферментативными реакциями
- в) видимое глазом свечение некоторых бактерий, простейших, ракообразных, червей, моллюсков, рыб; она обусловлена определенными физическими процессами
- г) свечение некоторых бактерий, простейших, ракообразных, червей, моллюсков, рыб; она обусловлена столкновением биологических объектов

Задание 4

Вокруг движущихся электрических зарядов существует

- а) только электрическое поле
- b) только магнитное поле
- с) гравитационное поле
- d) электрическое и магнитное поле

Задание 5

Что понимается под «электрическим током»?

- а) беспорядочное движение частиц вещества
- b) упорядоченное движение заряженных частиц в проводнике
- с) совокупность устройств, предназначенных для использования электрического сопротивления
- d) это устройство для измерения ЭДС

Задание 6

Что из нижеперечисленного не относится к уровням организации биологических систем?

- а) молекулярный
- b) биосферный
- с) переходный
- d) электронный

Задание 7

Основными функциональными веществами живого организма являются

- а) белки и нуклеиновые кислоты
- b) жиры, белки и углеводы
- с) жиры и углеводы
- d) нуклеиновые кислоты

Задание 8

Сколько частиц принимают участие в мономолекулярной реакции?

- a) 1
- b) 2
- c) 3
- d) 4

Задание 9

В каких формах существует материя?

- а) вещество и частица
- b) в форме энергии
- с) поля и вещества
- d) атомы и молекулы

Задание 10

Из каких элементарных частиц состоит вещество?

- а) атомы и молекулы
- b) электроны и протоны
- с) протоны, нейтроны, электроны
- d) молекулы

Задание 11

Из каких частиц состоит ядро химического элемента?

- а) позитронов
- b) нейтронов и электронов
- с) атомных электронов и ядер
- d) нейтронов и протонов

Задание 12

Что такое ион?

- а) положительно заряженный протон
- b) отрицательно заряженный электрон
- с) атом с избытком или недостатком электронов на орбитах
- d) положительно заряженное ядро

Задание 13

Сколько водородных связей может образовать каждая молекула воды?

- e) 1
- f) 2
- g) 3
- h) 4

Задание 14

Молекулы воды связанны друг с другом

а) электростатическими взаимодействиями

- b) водородными связями
- с) гидрофобными связями
- d) гидрофильными связями

Задание 15

Выберите правильный вариант расположения электромагнитных волн в сторону повышения энергии квантов

- а) радиоволны, видимый свет, УФ-излучение, ИК-излучение
- b) ИК-излучение, радиоволны, видимый свет, УФ-излучение
- с) УФ-излучение, видимый свет, ИК-излучение, радиоволны
- d) радиоволны, ИК-излучение, видимый свет, УФ-излучение

Задание 16

Выберите правильный вариант расположения электромагнитных волн в сторону повышения длины волны

- а) радиоволны, видимый свет, УФ-излучение, ИК-излучение
- b) ИК-излучение, радиоволны, видимый свет, УФ-излучение
- с) УФ-излучение, видимый свет, ИК- излучение, радиоволны
- d) радиоволны, ИК-излучение, видимый свет, УФ-излучение

Задание 17

Энергия какого цвета излучения больше?

- а) красный
- b) желтый
- с) зеленый
- d) синий
- е) фиолетовый

Задание 18

Энергия какого цвета излучения меньше?

- а) красный
- b) желтый
- с) зеленый
- d) синий
- е) фиолетовый
- f) оранжевый

Задание 19

Фотодеструктивные процессы происходят при действии вещество света с длиной волны?

- а) 650 800 нм
- b) 1000-10000 нм
- с) 200 300 нм
- d) 450 600 нм

Задание 20

Фоторегуляторные процессы происходят при действии света с длиной волны

- а) 10 100 нм
- b) 100 200 нм
- с) 200 300 нм

d) 400 - 900 нм

Задание 21

Какое вещество является радиоактивным?

- а) если содержит нуклоны
- b) если способно к самопроизвольному распаду
- с) если содержит различное число нейтронов и протонов
- d) если содержит одинаковое число нейтронов и протонов
- е) легкие химические элементы

Задание 22

К электромагнитному ионизирующему излучению относится

- а) вета-излучение
- b) у-излучение
- с) протонное излучение
- d) нейтронное излучение
- е) альфа-излучение

Задание 23

Ионизирующей способностью обладают:

- а) электромагнитные волны с λ 0,1 нм
- b) электромагнитные волны с λ 400 нм
- с) электромагнитные волны с λ 1 780 нм
- d) электромагнитные волны с λ 1 1 мм
- е) радиоволны

Ключ для проверки: 1-a; 2-b; 3-a; 4-d; 5-b; 6-c u d; 7-a; 8-a; 9-c; 10-a; 11-d; 12-c; 13-h; 14-a; 15-d; 16-c; 17-e; 18-a; 19-c; 20-d; 21-c; 22-b; 23-a.

5. Информация о разработчиках

Чайковская Ольга Николаевна, доктор физико-математических наук, профессор кафедры оптики и спектроскопии ТГУ, заведующая лабораторией фотофизики и фотохимии молекул.