Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа по дисциплине

Моделирование и визуализация физического эксперимента

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-1. Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.
- ПК-2. Способность методически грамотно строить планы лекционных и практических занятий по разделам учебных дисциплин и публично излагать теоретические и практические разделы учебных дисциплин в соответствии с утвержденными учебнометодическими пособиями при реализации образовательной деятельности в области физики
- ИПК 1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости.
- ИПК 1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.
- ИПК 2.1. Знает содержание учебных дисциплин, соответствующих профилю подготовки, образовательных стандартов по направлению подготовки, а также необходимых материалов по организации учебного процесса

2. Задачи освоения дисциплины

- 1) формирование у студентов представления о современных методах создания виртуальных моделей и экспериментов;
- 2) знакомство с современным программным обеспечением, используемым при создании виртуальных физических и демонстрационных моделей;
- 3) раскрытие специфики существующих моделей и способов их использования в образовательном процессе;
 - 4) изучение методов создания виртуального демонстрационного эксперимента;
- 5) приобретение практических умений и навыков по созданию физических моделей с использованием рассматриваемого программного обеспечения.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 3, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины обучающимся необходимы следующие знания и умения:

- знание основ программирования;
- владение основами работы в операционной системе (ОС) семейства Windows;
- умение работать с клиентскими программами в указанной ОС;
- базовые знания и умения работы в сети Интернет;
- знание общего курса физики и математики;

• знание основ программирования.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- лекции: 16 ч.;
- практические занятия: 32 ч.
- в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

NC-	II	Caramanna assara mannana
No	Наименование	Содержание раздела дисциплины
п/п	раздела дисциплины	
	Модуль 1.	
	Информационные	
	технологии в	
	моделировании	
	физического	
	эксперимента	
1	Введение во Flash-	Что такое Adobe Flash, введение во Flash-технологию.
	технологию	Используемое программное обеспечение. Возможности.
		Flash как графический редактор. Инструменты для работы с
		цветом. Импорт растровых и векторных изображений,
		использование в проекте. Размещение текстовых блоков,
		управление свойствами. Группировка объектов, работа в
		группах. Создание и управление слоями. Знакомство с
		панелью «Временная шкала», типами кадров. Размещение и
		управление кадрами. Покадровая анимация, автоматическое
		• • • • • • • • • • • • • • • • • • •
		заполнение промежуточных кадров с трансформацией
		формы или перемещением объекта. Управляющие слои.
		Предварительное воспроизведение анимации.
		Понятие символа во Flash. Виды символов. Создание и
		редактирование символа. Понятие библиотеки символов.
		Хранение символов и использование их в одном или
		нескольких проектах. Понятие вложенной анимации.
		Создание сложной анимации на примере символов.
		Использование специальных эффектов и фильтров. Создание
		различного вида кнопок для интерактивных проектов.
2	Основы языка	Общие сведения. Справочная информация по языку.
_	сценариев Action	Привязка кода к объектам и панель Actions. Централизация
	Script	кода. Классы и объекты. Переменные и объекты. Правила
	•	присвоения идентификаторов. Окна для отладки. Циклы и
		условные выражения. Массивы. Использование функций.
	N. 2	Абсолютные и относительные пути. Обработка событий.
	Модуль 2.	
	Моделирование	
	физического	
	эксперимента и	

	использование в	
	учебном процессе	
3	Основы моделирования с применением Flash и Action Script	Виды демонстрационного контента, особенности применения в различных формах обучения. Анимация на основе символов как средство создания сложной анимации. Экспорт подготовленной графики и анимации. Управление временной шкалой и свойствами символов. Публикация готового проекта в разных форматах. Flash-player как основное приложение для просмотра.
4	Создание демонстрационных и интерактивных физических моделей	Разработка сценария виртуальной модели. Физическая и математическая модели. Принципы создания программной анимации. Координатная система. Векторы и проекции. Управление отдельными и массивами объектов. Взаимодействие объектов. Силы. Модель столкновений. Компоненты во Flash. Использование интерактивных элементов. Визуальное и программное добавление компонент. Создание интерактивных форм с помощью компонент. Использование компонент в моделях. Программное рисование. Добавление аудио и видео-файлов в проект. Управление аудио и видео.
5	Технологии 3D- моделирования	3D — как средство повышения наглядности. Изометрия. Преобразования координат в изометрической и трехмерной системах. Подключаемые компоненты. Использование примитивов, текстур и освещения. Создание динамических сцен. Виртуальные физические эксперименты с применением компонент 3D. Планирование образовательного процесса с применением интерактивных демонстрационных моделей.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, проведения семинарских заданий и выполнению практических работ. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Промежуточный контроль знаний по дисциплине осуществляется в форме экзамена, который предусматривает дифференцированное оценивание самостоятельно выполненного учащимися итогового проекта.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=795
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) План семинарских / практических занятий по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
 - 1. Заседатель. В.С. Создание образовательных ресурсов в Macromedia Flash: от идеи до издания. Томск: ТГУ, 2007.
 - 2. Гурский Д. ActionScript 2: программирование во Flash MX 2004. Для профессионалов. СПб.: Питер, 2004. 1088 с.
 - 3. Джоб М. Секреты разработки игр в Macromedia Flash МХ. М: КУДИЦ-ОБРАЗ, 2004. – 576 с.
 - 4. Мук К. ActionScript 3.0 для Flash. Подробное руководство. СПб.: Питер, 2009. 992 с: ил.
 - 5. Лотт Дж,, Шалл Д., Питере К, ActionScript 3.0. Сборник рецептов. Пер. с англ. СПб: Символ-Плюс, 2007. 608 с, ил.

б) дополнительная литература:

- 6. Бхангал Ш. Flash. Трюки. СПб.: Питер, 2005. 464 с.
- 7. Вогелир Д. Macromedia Flash MX Professional 2004. Полное руководство. М: Вильямс, 2004. 832 с.
- 8. ДиХаан Д. Анимация и спецэффекты во Flash MX 2004. М: Вильямс, 2005. 512 с.
- 9. Дронов В. Macromedia Flash MX 2004. СПб.: ВНV-СПб, 2004. $800 \, \mathrm{c}$.
- 10. Линднер Г. Картины современной физики. М.: Мир, 1977. 272 с.
- 11. Лотт Д. Flash. Сборник рецептов. М: Русская Редакция, 2007. 544 с.
- 12. Открытая физика: Электронное учеб. пособие. Части 1 и 2. Москва: Физикон, 2002.
- 13. Павленко Ю.Г. Физика. Полный курс для школьников и поступающих в вузы: Учеб. пособие. М.: Большая Медведица, 2002.
- 14. Рейнхардт Р. Macromedia Flash MX 2004 ActionScript. Библия пользователя. M: Вильямс. 960 с.
- 15. Рейнхардт Р., Choy C. Macromedia Flash 8. Библия пользователя.: Пер. с англ. М: Вильямс, 2006. 1328 с.
- 16. Роджерс Э. Физика для любознательных. Т. І. Материя, движение, сила. М.: Мир, 1969. 479 с.
- 17. Роджерс Э. Физика для любознательных. Т. ІІ. Наука о земле и вселенной. Молекулы и энергия. М.: Мир, 1970. 656 с.
- 18. Роджерс Э. Физика для любознательных. Т. III. Электричество и магнетизм. Атомы и ядра. М.: Мир, 1973. 666 с.
- 19. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1965. 266 с.
- 20. Фейнман Р. Характер физических законов. М.: Наука, 1987. 158 с.
- 21. Физика: Электричество. 10 кл.: Учебник для углубленного изучения физики / Под ред. Г.Я. Мякишева. М.: Дрофа, 2001.
- 22. Элементарный учебник физики / Под ред. Г.С. Ландсберга. В 3 кн. М.: Физматлит, 2000 и предшествующие издания.
- 23. Macromedia, Inc. Macromedia Flash MX 2004 ActionScript 2.0. Справочник разработчика. М: Вильямс, 2005. 896 с.
- в) ресурсы сети Интернет:
 - 24. Six reasons to use ActionScript 3.0, Adobe Developer (Connectionhttp://www.adobe.com/devnet/actionscript/articles/six_reasons_as3.ht ml)
 - 25. ActionScript Tutorial (http://www.siteground.com/tutorials/actionscript/actionscript_software.htm#Flas h)

26. В. Медведев. Изучай ActionScript 3.0. Уроки для начинающих (http://uroki-flash-as3.ru/)

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения:
 MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
- Публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- Любой совместимый с ОС браузер (IE, Firefox, Chrome).
- Любой, свободно-распространяемый редактор кода Action Script 3.
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Автор – Заседатель Вячеслав Сергеевич, старший преподаватель кафедры общей и экспериментальной физики ТГУ.