Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Механико-математический факультет

УТВЕРЖДЕНО: Декан Л. В.Гензе

Оценочные материалы по дисциплине

Математическое моделирование на графах

по направлению подготовки / специальности

02.03.01 Математика и компьютерные науки

Направленность (профиль) подготовки/ специализация: Вычислительная математика и компьютерное моделирование

Форма обучения **Очная**

Квалификация

Математик. Преподаватель / Математик. Вычислитель / Исследователь в области математики и компьютерных наук

Год приема **2024**, **2025**

СОГЛАСОВАНО: Руководитель ОП Л.В. Гензе

Председатель УМК Е.А. Тарасов

Томск - 2024

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен разрабатывать, анализировать и внедрять математические модели в современной науке и технике, экономике и управлении.

ОПК-3 Способен разрабатывать и реализовывать алгоритмы и компьютерные программы, пригодные для практического применения.

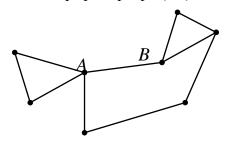
Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РООПК-2.1 Умеет обоснованно выбрать тип математической модели для формализации решаемой задачи

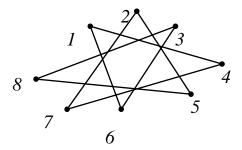
РООПК-2.2 Применяет стандартные и типовые действия при построении математической модели определенного типа

РООПК-2.3 Применяет подходы визуализации и представления результатов математического моделирования для апробации и демонстрации в виде отчетов, презентаций и научных текстов

РООПК-3.1 Владеет теоретическими основами программирования и алгоритмизации

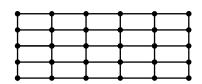

РООПК-3.2 Способен реализовывать алгоритмы на языках программирования высокого уровня

РООПК-3.3 Способен разрабатывать программные алгоритмы при решении задач методами математики и механики

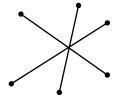

2. Оценочные материалы текущего контроля и критерии оценивания

Вопросы текущего контроля на лекциях:

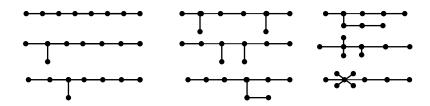
1. Является ли в графе G ребро (AB) мостом?

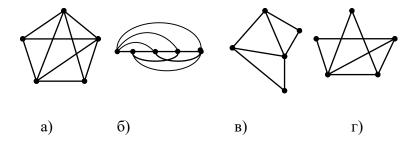


2. Найти простой цикл в графе. Является ли этот граф двудольным?



- 3. Нарисуйте связный граф с семью вершинами и шестью ребрами.
- 4. Можно ли из полного графа с одиннадцатью вершинами удалить часть рёбер так, чтобы степень каждой вершины была равна семи?
- 5. Какое наибольшее число ребер можно удалить, чтобы граф


остался связным?


- 6. При встрече nдрузей обменялись рукопожатиями. Сколько было друзей, если рукопожатий было 28.
- 7. Является ли граф двудольным?

- 8. Сколько существует свободных деревьев с шестью вершинами?
- 9. Есть ли среди свободных деревьев изоморфные?

- 10. Составить дерево розыгрыша кубка по футболу среди 8 команд по олимпийской системе: без ничьих, проигравшая команда выбывает.
- 11. Изоморфны ли графы?

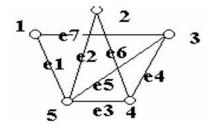
12. Найти радиус, диаметр и центр графа

13. Самая длинная простая цепь является диаметром графа. Доказать, что любые два диаметра имеют общую вершину.

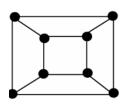
- 14. При каких условиях в задаче Торричелли Ферма точка P находится внутри треугольника.
- 15. Записать матрицы смежности для графов С3, К3, К3,3.
- 16. Сколько помеченных графов порождает простой цикл С₅?

Критерии оценивания текущей аттестации.

Активная работа студента на занятиях, правильные ответы на тест-вопросы определяются оценками «зачтено», «не зачтено».


3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Итоговая аттестация проводится в форме зачета. Билет содержит два вопроса, проверяющий ОПК-2, ОПК-3:


Примерный перечень теоретических вопросов

Билет №1

- 1. Нарисуйте полный граф с n вершинами, если n = 2.
- 2. Изобразите матрицу смежности графа:

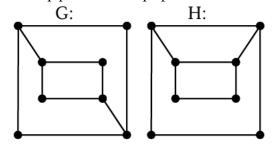
- 3. Для каких чисел n граф C_n является эйлеровым?
- 4. Найдите цикломатическое число для графов: К_п
- 5. Для графов, изображенных на рисунке, найдите хроматические числа

куб

- 1. Подставить правильное: Полный граф K₂ имеет ...ребер: а) 8; б) 2; в) 4; г) 1; д) 0.
- 2. Количество фундаментальных циклов в связном графе К₄ равно а) 1;6) 2;в) 4 ;г) 3.
- 3. Граф называется связным, если...: а) Все его вершины соединены между собой; б) Все его ребра кратны; в) Все его вершины соединены друг с другом; г) Все его ребра ориентированы.
- 4. Граф с петлями и кратными ребрами называется: а) мультиграфом; б) псевдографом; в) полным графом; г) простым графом; д) звездным графом.

5. Нарисуйте по матрицам смежности и инцидентности два графа. Совпадают ли они?

А – матрица смежности:

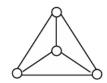

В – матрица инцидентности:

A	v ₁	v_2	v_3	v_4
$\overline{\mathrm{v}_1}$	0	1	1	1
\mathbf{v}_{2}	1	0	1	0
v_3	1	1	0	1
v_4	1	0	1	0

B	$ e_1 $	\mathbf{e}_{2}	e_3	e_4	e_5
v_1^{-}	1	0	1	1	0
v_2	1	e ₂ 0 1 1 0	0	0	0
v_3	0	1	1	0	1
v_4	0	0	0	1	1

Билет №3

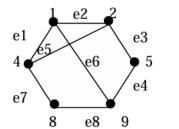
1. Изоморфны ли эти графы?

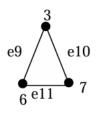


- 2. Нарисуйте полный граф с п вершинами, если n=5.
- 3. Для каких чисел п граф К_п является эйлеровым?
- 4. Найдите какие-нибудь остовные деревья для графа К₃₃.
- 5. Граф называется орграфом, если...: а)Все его ребра кратны; б) Все его вершины соединены между собой; в) Все его ребра ориентированы; г) Все его вершины соединены друг с другом.

Билет №4

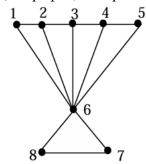
- 1. Если каждая из вершин неориентированного графа соединена рёбрами с остальными, то такой граф называется: а) гиперграфом; б) мультиграфом; в) цепью; г) полным графом.
- 2. Цикломатическое число графа $\lambda(G) = m-n+d$. Что есть m, n, d?
- 3. Четно ли число нечетных по номеру вершин графа?
- 4. Какие из предложенных графов являются регулярными?





5. Может ли полный граф иметь 7, 8, 9, или 10 ребер?

- 1. Нарисуйте полный граф с п вершинами, если n=3.
- 2. Изобразите матрицу смежности графа:



- 3. Для каких чисел п граф С_п является гамильтоновым?
- 4. Найдите хроматические числа для полного графа с п вершинами.
- 5. Сколько ребер в полном графе с 20 вершинами?

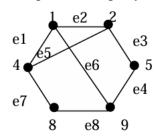
Билет №6

1. Для графов, изображенных на рисунке, найдите хроматические числа

- 2. Цикломатическое число графа $\lambda(G) = m-n+d$. Что есть m, n, d?
- 3. Выберите верные утверждения. В матрице инцидентности для ориентированного графа: a) bij = 1, если вершина Vi является началом дуги Ej; б) bij = 0, если вершина Vi является концом дуги Ej; в) bij = -1, если вершина Vi является концом дуги Ej; г) bij = 0, если вершина Vi не инцидентна ребру Ej.
- 4. Какова степень каждой вершины полного графа, у которого п вершин?
- 5. Найдите цикломатическое число для графов C_n.

Билет №7

1. Дана матрица смежности графа. Определить, является ли граф эйлеровым, гамильтоновым.


	1	2	3	4	5
1	0	1	0	1	1
2	1	0	1	1	1
3	0	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	0

- 2. Найдите цикломатическое число для графов $K_{m,n}$.
- 3. Подставить правильное: n-гиперкуб имеет ... вершин: a) n; б) 2n; в) 2^n ; г) n^2 ; д) n!.
- 4. Выбрать правильное: Эйлеров цикл в графе содержит а) каждую вершину ровно один раз; б) каждое ребро ровно один раз.
- 5. Какие из графов К₄, К₅, К_{3,3} являются планарными?

Билет №8

1. Степенью вершины называется...: а) Число ребер, одним из концов которых она является; б) Число соединенных с ней вершин; в) Число исходящих из нее дуг; г) Число входящих в нее дуг; д) Нет правильного ответа; е) Все ответы верны.

2. Изобразите матрицу смежности графа:

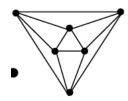
- 3. Для каких чисел n граф K_n является гамильтоновым?
- 4. Сколько ребер в полном графе с 20 вершинами?
- 5. Любой граф изоморфный плоскому называется: а) кратным; б) симметрическим; в) хроматическим; г) планарным.

Билет №9

- 1. Граф называется ..., если существует такое разбиение множества его вершин на две части, что концы каждого ребра принадлежат разным частям. а) бихроматическим; б) двудольным; в) двойным; г) симметричным.
- 2. Дана матрица смежности. Изобразите граф, ей соответствующий.

	1	2	3	4	5	6	7
1	0	0	1	1	0	1	0
2	0	0	0	0	1	0	1
3	1	0	0	1	0	1	0
4	1	0	1	0	1	0	1
5	0	1	0	1	0	0	1
6	1	0	1	0	0	0	0
7	0	1	0	1	1	0	0

- 3. Найдите какие-нибудь остовные деревья для графа К₅.
- 4. Сколько ребер в полном графе с 20 вершинами?
- 5. Если граф имеет матрицу смежности и не имеет петель, то на главной диагонали матрицы у него всегда стоят: а) нули; б) единицы.

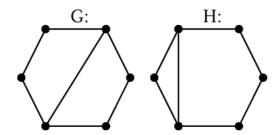

Билет №10

- 1. Выберите верные утверждения: а) цикломатическое число дерева равно нулю; б) цикломатическое число леса равно нулю; в) цикломатическое число леса всегда положительно; г) а) для остальных графов цикломатическое число отрицательное.
- 2. Дана матрица смежности графа. Определить, является ли граф эйлеровым.

	1	2	3	4	5
1	0	1	0	1	1
2	1	0	1	1	1
3	0	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	0

- 3. Подставить правильное: n-гиперкуб имеет ... peбep: a) $n \cdot 2^n$; б) 2n; в) 2^n ; г) n^2 ; д) $n \cdot 2^{n-1}$
- 4. Выбрать правильное: Гамильтонов цикл в графе содержит а) каждую вершину ровно один раз; б) каждое ребро ровно один раз.
- 5. Какие из графов К₄, К₅, К_{3,3} являются планарными?

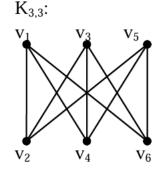
- 1. Если две вершины соединены ребром, то они называются...: а) Смежные; б) Изоморфные; в) Изолированные; г) Висячие; д) Четные; е) Инцидентные.
- 2. Дан не орграф G(V, E), |E|=3, |V|=5. Чему равна размер одного из массивов, составляющих список ребер графа?
- 3. Для графов, изображенных на рисунке, найдите хроматические числа

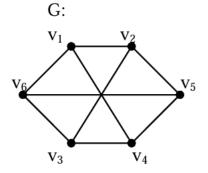


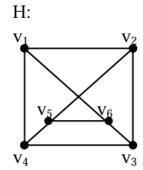
октаэдр

- 4. Подставить правильное: Полный граф K₃ имеет ...вершин: а) 3; б) 2; в) 4; г) 1; д) 0.
- 5. Если две вершины соединены ребром, то они называются...: а) Смежные; б) Изоморфные; в) Изолированные; г) Висячие; д) Четные; е) Инцидентные.

Билет №12

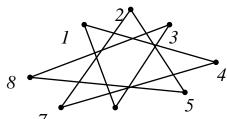

- 1. Граф это...: а) множество точек, две из которых обязательно соединяются линиями; б) множество точек, которые никогда не соединяются линиями; в) только две точки, которые соединяются линиями; г) множество точек, которые могут соединяться линиями.
- 2. Матрица инцидентности не орграфа G(V, E), |E|=7, |V|=4 есть: а) квадратная матрица B(4x4); б) матрица B(4x7); в) квадратная матрица B(7x7); г) матрица B(7x4).
- 3. Маршрут в не орграфе, конечная и начальная вершина которого не совпадают, называется: а) цепью; б) контуром; в) циклом.
- 4. Изоморфны ли эти графы?




5. Нарисуйте граф К_{1,5}.

Билет №13

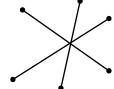
1. Изоморфны ли эти графы?



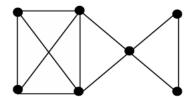
2. Остовной подграф графа – это...

- 3. Граф, содержащий кратные ребра, но не содержащий петель, называется: а) полным графом; б) простым графом; в) псевдографом; г) мультиграфом.
- 4. Подставить правильное: n-гиперкуб имеет ... peбep: a) $n \cdot 2^n$; б) 2n; в) 2^n ; г) n^2 ; д) $n \cdot 2^{n-1}$.
- 5. Какие из графов К4, К5, К3,3 являются планарными?

Билет №14

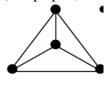

- 1. Если два ребра соединены общей вершиной, то они называются...: а) Смежными; б) Изоморфными; в) Изолированными; г) Висячими; д) Четными; е) Инцидентными.
- 2. Матрица смежности произвольного не орграфа есть: а) квадратная несимметричная матрица, элементами главной диагонали которой являются нулевые элементы; б) квадратная симметричная матрица, элементами главной диагонали которой могут быть и нули и единицы; в) квадратная симметричная матрица, элементы главной диагонали которой равны нулю; г) Нет правильного ответа.
- 3. Можно ли по количеству ребер оценить сумму степеней всех вершин? Может ли она быть четной?
- 4. Найти простой цикл в графе. Является ли этот граф двудольным?

5. При встрече п друзей обменялись рукопожатиями. Сколько было друзей, если рукопожатий было 28?


Билет №15

1. Является ли граф двудольным?

- 2. Записать матрицы смежности для графов С₃.
- 3. Способы задания графа бывают: а) геометрический; б) указание вершин; в) указание ребер; в) матричный.
- 4. Какой из циклов графа с множеством вершин {a,b,c,d,e,f} является гамильтоновым: a) abcea; б) fbecdf; в) abcedfa; г) abcdfca? Выберите правильный ответ.
- 5. Любой подграф связного графа G, содержащий все вершины графа G и являющийся деревом называется ... графа.


- 1. Выберите правильное: гамильтонов цикл а) содержит каждое ребро только один раз; б) содержит каждую вершину только один раз; в) проходит через все ребра и вершины графа только один раз.
- 2. Выберите верные утверждения. В матрице инцидентности для неориентированного графа: a) bij = 1, если вершина Vi инцидентна ребру Ej; б) bij = 0, если вершина Vi инцидентна ребру Ej; в) bij = -1, если вершина Vi не инцидентна ребру Ej; г) bij = 0, если вершина Vi не инцидентна ребру Ej.
- 3. Четно ли число нечетных по номеру вершин графа?
- 4. Для графов, изображенных на рисунке, найдите хроматические числа

5. Подставить правильное: Полный граф K_3 имеет ...вершин: а) 3; б) 2; в) 4; г) 1; д) 0.

Билет №17

- 1. Какие из графов К₄, К₅, К_{3,3} являются планарными?
- 2. Для графов, изображенных на рисунке, найдите хроматические числа

тетраэдр

- 3. Если два ребра соединены общей вершиной, то они называются...: а) Смежными; б) Изоморфными; в) Изолированными; г) Висячими; д) Четными; е) Инцидентными.
- 4. В орграфе G вершина х инцидентна дуге v если: а) вершина х начало дуги v; б) вершина х либо начало дуги v, либо конец дуги v; в) вершина х конец дуги v.
- 5. Эйлеровым циклом называется: а) цикл, проходящий по всем вершинам графа ровно по одному разу; б) цикл, проходящий по всем ребрам графа ровно по одному разу.

Билет №18

- 1. Какая вершина графа называется изолированной?
- 2. Можно ли по количеству ребер оценить сумму степеней всех вершин? Может ли она быть четной?
- 3. Нарисуйте граф $K_{1.5}$.
- 4. Выберите верные утверждения. В матрице инцидентности для неориентированного графа: a) bij = 1, если вершина Vi инцидентна ребру Ej; б) bij = 0, если вершина Vi инцидентна ребру Ej; в) bij = -1, если вершина Vi не инцидентна ребру Ej; г) bij = 0, если вершина Vi не инцидентна ребру Ej.
- 5. Сколько ребер в полном графе с 20 вершинами?

Билет №19

- 1. Вершина графа, имеющая степень равную 1, называется: а) изолированной; б) висячей; в) свободной; г) связной.
- 2. Подставить правильное: n-гиперкуб имеет ... peбep: a) $n \cdot 2^n$; б) 2n; в) 2^n ; г) n^2 ; д) $n \cdot 2^{n-1}$.
- 3. Матрица инцидентности не орграфа G(V, E), |E|=7, |V|=4 есть: а) квадратная матрица B(4x4); б) матрица B(4x7); в) квадратная матрица B(7x7); г) матрица B(7x4).
- 4. Для того, чтобы в графе существовала эйлерова цепь необходимо и достаточно, чтобы: а) все вершины графа имели четные степени; б) ровно две вершины имели четные степени; в) ровно две вершины имели нечетные степени.
- 5. Какой граф называется регулярным?

Билет №20

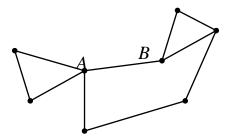
1. Остовной подграф графа – это...

- 2. Сколько подграфов нужно построить, чтобы проверить, планарен ли граф с числом вершин, равным 8?
- 3. Матрица смежности произвольного не орграфа есть: а) квадратная несимметричная матрица, элементами главной диагонали которой являются нулевые элементы; б) квадратная симметричная матрица, элементами главной диагонали которой могут быть и нули и единицы; в) квадратная симметричная матрица, элементы главной диагонали которой равны нулю; г) Нет правильного ответа.
- 4. Записать матрицы смежности для графов С₃.

5. Является ли граф двудольным?

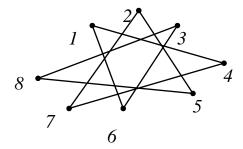
Результаты зачета определяются оценками «зачтено», «не зачтено».

Чтобы получить «зачтено», нужно ответить на теоретические вопросы из билета.


Таблица Система критериев при оценивании ответов на вопросы зачета

Критерии соответствия	Оценка
Ответ является неполным, изложение носит поверхностный характер, логически противоречиво, но понятно.	удовлетворительно
Неполный логически противоречивый недоказательный ответ или ответ отсутствует.	неудовлетворительно

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)


Теоретические вопросы

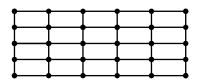
1. Является ли в графе G ребро (AB) мостом?

Да

2. Найти простой цикл в графе. Является ли этот граф двудольным?

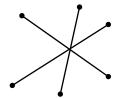
a)1,6,3,8,5,2,7,4,1

б) да


3. Можно ли из полного графа с одиннадцатью вершинами удалить часть рёбер так, чтобы степень каждой вершины была равна семи?

Нет.

4. Какое наибольшее число ребер можно удалить, чтобы граф


остался связным?

Ответ 20

5. При встрече n друзей обменялись рукопожатиями. Сколько было друзей, если рукопожатий было 28. Ответ 8

6. Является ли граф двудольным?

Ответ да.

7. При каких условиях в задаче Торричелли — Ферма точка P находится внутри треугольника.

Ответ-треугольник должен быть остроугольным.

8. Кто является основателем теории графов? Ответ – Л. Эйлер.

9. Для каких целей используется в теории графов алгоритм Дейкстры? Ответ-для нахождения кратчайшего расстояния между вершинами графа.

- 10. Какие термины параллельных вычислений используются в ациклическом графе? Ответ-ярус, ширина и высота параллельной формы.
- 11. Чему равен спектр матрицы смежности графа K_5 ? Ответ -спектр=0.
- 12. Докажите, что во всяком графе G сумма степеней всех его вершин есть число четное, равное удвоенному числу вершин графа.

Информация о разработчиках

Старченко Александр Васильевич, д.ф.-м.н., профессор, ТГУ, зав.каф.