Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Общая теория относительности

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 способность проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные;
- ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-2.2 Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные выводы по результатам исследования;

ИПК-1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.

2. Задачи освоения дисциплины

- изучение механических и электромагнитных явлений в искривлённом пространстве-времени и в неинерциальных системах отсчёта;
- изучение уравнений гравитационного поля;
- изучение астрофизических процессов на основе сферически симметричного и осесимметричного решений уравнений гравитационного поля;
- изучение гравитационных волн и космологических процессов на основе соответствующих решений уравнений гравитационного поля и данных наблюдений;
- изучение курса ОТО должно также сформировать навыки построения и анализа решений уравнений гравитационного поля и исследования физических явлений на искривлённом пространственно-временном фоне.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 8, дифференцированный зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам:

общая физика, дифференциальное и интегральное исчисление, линейная алгебра, математическая физика, классическая механика, классические поля, дифференциальная геометрия и топология.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часа, из которых:

- лекции: 24 ч.;
- практические занятия: 24 ч.;

в том числе практическая подготовка: 24 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение.

Краткое содержание темы.

Предмет общей теории относительности.

Тема 2. Риманова геометрия.

Краткое содержание темы.

Алгебра тензоров. Риманова метрика и аффинная связность. Тензор кривизны. Векторы Киллинга.

Тема 3. Физика в искривлённом пространстве-времени.

Краткое содержание темы.

Свободное движение тел и искривлённом пространстве-времени. Ньютоновское приближение. Электродинамика в общей теории относительности. Тензор энергии-импульса.

Тема 4. Уравнения гравитационного поля.

Краткое содержание темы.

Уравнение гравитационного поля в теории Ньютона. Уравнения гравитационного поля в общей теории относительности. Лагранжева формулировка.

Тема 5. Сферически-симметричное гравитационное поле.

Краткое содержание темы.

Решение Шварцшильда. Уравнения движения тел в сферически симметричном гравитационном поле. Движение планет. Смещение перигелия Меркурия. Отклонение луча света полем массивного тела. Запаздывание радарного эха. Гравитационное красное смешение.

Тема 6. Законы сохранения в общей теории относительности.

Краткое содержание темы.

Геометрия пространства-времени и законы сохранения. Псевдотензор энергии-импульса гравитационного поля.

Тема 7. Эволюция звёзд и чёрные дыры.

Краткое содержание темы.

Эволюция звёзд в зависимости от их начальной массы. Синтез химических элементов.

Новые и сверхновые звёзды. Белые карлики, нейтронные звёзды, чёрные дыры.

Заряженные и вращающиеся чёрные дыры.

Тема 8. Гравитационные волны.

Краткое содержание темы.

Волновое решение уравнений гравитационного поля. Возможные источники гравитационных волн. Приёмники гравитационных волн. Наблюдательные свидетельства существования гравитационных волн.

Тема 9. Строение и эволюция Вселенной.

Краткое содержание темы.

Метрика Фридмана-Робертсона-Уокера. Измерение космических расстояний.

Космологическое красное смещение. Решение Фридмана и динамика расширения

Вселенной. Ускоряющееся расширение: данные наблюдений. Реликтовое излучение.

Космологическая инфляция. Анизотропное космологическое решение.

Тема 10. Модификации общей теории относительности.

Краткое содержание темы.

Теория Бранса-Дикке. Теория Лавлока. f(R)- и f(R,G)-теории.

Тема 11. Тетрадное представление уравнений гравитационного поля.

Краткое содержание темы.

Тетрадный формализм. Представление уравнений гравитационного поля с помощью тетрадного формализма.

Тема 12. Теория Калуцы.

Краткое содержание темы.

Представление о невидимых пространственных измерениях. Теория Калуцы как попытка объединить гравитационное и электромагнитное взаимодействия в рамках единого формализма.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путем контроля посещаемости, коллоквиума и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Дифференцированный зачет в восьмом семестре проводится в устной форме по экзаменационным билетам.

Экзаменационный билет состоит из двух теоретических вопросов и одной задачи. После ответа на основные вопросы (включая задачу) экзаменуемому задаются три дополнительных вопроса. Результаты дифференцированного зачёта определяются исходя из ответов на зачёте и коллоквиуме (для участвовавших в коллоквиуме).

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - б) План семинарских / практических занятий по дисциплине.
- Тема 2. Нахождение (по заданному метрическому тензору) ассоциированной с метрикой аффинной связности, тензоров Римана и Риччи, скалярной кривизны и тензора Эйнштейна. Получение следствий из тождества Бианки. Установление «тензорности» или «нетензорности» тех или иных математических конструкций. Нахождение векторных полей Киллинга для заданных пространств.
- Тема 3. Получение уравнений движения пробной частицы в заданном гравитационном поле. Нахождение тензора энергии-импульса различных полей, заданных лагранжианами.
- Тема 4. Получение уравнений гравитационного поля путём варьирования лагранжиана. Ньютоновское приближение для уравнений гравитационного поля.
- Тема 5. Получение уравнений радиального движения в геометрии Шварцшильда для различных начальных условий. Расчёт красного и синего смещений для света в сферически-симметричном гравитационном поле.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- С. Вейнберг. Гравитация и космология. М.: «Мир», 1975. 696 с.
- Л. Д. Ландау, Е. М. Лифшиц. Теоретическая физика: Учеб. пособие. В 10 т. Т. II.
 Теория поля. М.: Наука. Гл. ред. физ.-мат. лит., 1988. 512 с.

- П. А. М. Дирак. Общая теория относительности. М.: Атомиздат, 1978. 63 с.
- Р. М. Уолд. Общая теория относительности. М.: РУДН, 2008. 693 с.
- Н. В. Мицкевич. Релятивистская физика: специальная теория относительности, общая теория относительности. М.: ЛИБРОКОМ, 2012. 195 с.
- Р. С. Сингатуллин. Риманова геометрия и общая теория относительности. М.: Ленанд, 2014. 141 с.
- Сборник задач по теории относительности и гравитации. М.: Мир, 1979. 535 с.
- П. К. Рашевский. Риманова геометрия и тензорный анализ. М.: Наука, 1967. 664 с.
- Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко. Современная геометрия. Методы и приложения. Т. 1. М.: Эдиториал УРСС, 2001. 334 с.
- Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко. Современная геометрия. Методы и приложения. Т. 2. М.: Эдиториал УРСС, 2001. 293 с.
- Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко. Современная геометрия. Методы и приложения. Т. 3. М.: Эдиториал УРСС, 2001. 286 с.
- А. Е. Либер. Тензорный анализ. Саратов: Изд-во Саратовского университета, 1975. 143 с.
- С. Чандрасекар. Математическая теория чёрных дыр. Ч. 1. М.: Мир, 1986. 276
 с.
- С. Чандрасекар. Математическая теория чёрных дыр. Ч. 2. М.: Мир, 1986. 355 с.
- И. Д. Новиков, В. П. Фролов. Физика чёрных дыр. М.: Наука, 1986. 326 с.
- C. Вайнберг. Космология. M.: УРСС, 2012. 608 c.
- Я. Б. Зельдович, И. Д. Новиков. Строение и эволюция Вселенной. М.: Наука. Физматлит, 1975. 735 с.
 - б) дополнительная литература:
- Д. В. Гальцов. Частицы и поля в окрестности чёрных дыр. М.: Издательство Московского университета, 1986. 287 с.
- Д. С. Горбунов, В. А. Рубаков. Введение в теорию ранней Вселенной: Теория горячего Большого взрыва. М.: Издательство ЛКИ, 2008. 552 с., цв. вкл.
- Д. С. Горбунов, В. А. Рубаков. Введение в теорию ранней Вселенной:
 Космологические возмущения. Инфляционная теория. М.: КРАСАНД, 2010. —
 568 с., цв. вкл.
- Р. Пенроуз, В. Риндлер. Спиноры и пространство-время. Два-спинорное исчисление и релятивистские поля. М.: Мир, 1987. 528 с., ил.
- Р. Пенроуз, В. Риндлер. Спиноры и пространство-время. Спинорные и твисторные методы в геометрии пространства-времени. М.: Мир, 1988. 572 с., ил.
- А. А. Логунов. Лекции по теории относительности и гравитации: соврем. анализ проблемы. М.: Наука, 2005. 318 с.
- Р. Ф. Фейнман, М. Б. Мориниго, У. Г. Вагнер. Фейнмановские лекции по гравитации. М.: «Янус-К», 2000. 296 с.
- Ю. С. Владимиров. Геометрофизика. М.: БИНОМ. Лаборатория знаний, 2005. 600 с.

- в) ресурсы сети Интернет:
- S. M. Carroll. Lecture notes on general relativity http://lanl.arxiv.org/abs/gr-qc/9712019
- A. Liddle. An Introduction to cosmological inflation http://lanl.arxiv.org/abs/astro-ph/9901124
- A. Linde. Inflatinary Cosmology http://lanl.arxiv.org/abs/0705.0164
- M. Trodden, S. M. Carroll. TASI Lectures: Introduction to Cosmology http://lanl.arxiv.org/abs/astro-ph/0401547

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ— http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 Электронная библиотека (репозиторий) ТГУ—
- http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории, оборудованные соответствующей техникой (в том числе «Актру»), для реализации учебного процесса в смешанном формате.

15. Информация о разработчиках

Кирнос И. В., кандидат физико-математических наук, физический факультет ТГУ, доцент кафедры квантовой теории поля.