Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Случайные процессы

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1. Способен применять фундаментальные знания, полученные в области математических и (или) естественных наук, и использовать их в профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-1.1. Применяет фундаментальные знания, полученные в области математических и (или) естественных наук.

ИОПК-1.2. Использует фундаментальные знания, полученные в области математических и (или) естественных наук в профессиональной деятельности.

ИОПК-1.3. Обладает необходимыми знаниями для исследования информационных систем и их компонент.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

– контрольная работа

Контрольная работа (ИОПК-1.2, ИОПК-1.3)

Контрольная работа состоит из одного теоретического вопроса и 2 задач.

Перечень теоретических вопросов:

Вопрос 1. Основные понятия теории случайных процессов.

Вопрос 2. Семейство конечномерных распределений СП.

Вопрос 3. Корреляционная функция.

Вопрос 4. Стационарные и эргодические процессы.

Вопрос 5. Цепи Маркова с дискретным временем. Переходные вероятности.

Вопрос 6. Классификация состояний цепи Маркова.

Вопрос 7. Эргодические теоремы для цепей Маркова с дискретным временем.

Примеры задач:

Задача 1. Дан процесс $\eta(t) = \xi \cos t + \mu \sin t$. Здесь случайные величины ξ и μ независимые и равномерно распределены в интервалах [-1, 1], [-2, 2] соответственно. Найти математическое ожидание, дисперсию, функцию корреляции случайного процесса $\eta(t)$.

Задача 2. Классифицировать состояния для цепи Маркова, заданной матрицей вероятностей переходов, записать ее в каноническом виде. Составить уравнения для нахождения среднего времени перехода из одного состояния в другое внугри замкнутого класса (все возможные варианты)

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0.5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \end{bmatrix}$$

Ответы:

Задача 1. $M\eta(t) = 0$, $D\eta(t) = 1/6[1 + \cos 2t]$, $R_{\eta}(t, s) = 5/6[\cos(t - s) + \cos(t + s)]$

Задача 2.
$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0,5 & 0,5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0,5 & 0,5 & 0 \end{bmatrix}$$

 $m_{41} = \frac{1}{2} + \frac{1}{2}(1 + m_{41})$

 $m_{72} = \frac{1}{2} + \frac{1}{2}(1 + m_{72})$

 $m_{76} = \frac{1}{2} + \frac{1}{2}(1 + m_{76})$

 $m_{33} = m_{55} = m_{14} = 1$

Критерии оценивания:

Критерий оценивания	Оценка
Студент выполнил все четыре задания	отлично
Студент выполнил три задания	хорошо
Студент выполнил два задания	удовлетворительно
Студент выполнил не более одного задания	неудовлетворительно

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет с оценкой в пятом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из двух частей. Первая часть содержит 2 теоретических вопроса, проверяющих ИОПК-1.2, ИОПК-1.3, вторая часть содержит задачу, проверяющую ИОПК-1.1

Перечень теоретических вопросов:

- 1. Вопрос 1. Основные понятия теории случайных процессов.
- 2. Вопрос 2. Семейство конечномерных распределений СП.
- 3. Вопрос 3. Корреляционная функция.
- 4. Вопрос 4. Стационарные и эргодические процессы.
- 5. Вопрос 5. Цепи Маркова с дискретным временем. Переходные вероятности.
- 6. Вопрос 6. Классификация состояний цепи Маркова.
- 7. Вопрос 7. Эргодические теоремы для цепей Маркова с дискретным временем.
- 8. Вопрос 8. Цепи Маркова с непрерывным временем. Матрица инфинитезимальных характеристик.
- 9. Вопрос 9. Прямая и обратная системы дифференциальных уравнений Колмогорова.
 - 10. Вопрос 10. Процессы гибели и размножения.
 - 11. Вопрос 11. Пуассоновский и простейший потоки.

Задача 1. Сетевой вирус поражает компьютеры с постоянной интенсивностью λ. Время, которое тратит системный администратор для уничтожения вируса на одном компьютере экспоненциальное с параметром μ. Найти стационарное распределение вероятностей числа зараженных компьютеров.

Ответы:

Задача 1. $\pi_i = (1 - \lambda/\mu)(\lambda/\mu)^i$, i – число зараженных компьютеров

Критерий оценивания	Оценка
Студент выполнил все четыре задания	отлично
Студент выполнил три задания	хорошо
Студент выполнил два задания	удовлетворительно
Студент выполнил не более одного задания	неудовлетворительно

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Задачи

Задача 1 (ИОПК-1.2, ИОПК-1.3)

Найти финальное распределение цепи Маркова с дискретным временем, которая определяется матрицей вероятностей переходов за один шаг

$$P = \begin{bmatrix} 1 - p & ? \\ q & ? \end{bmatrix}$$

Задача 2 (ИОПК-1.2, ИОПК-1.3)

Система состоит из 3 идентичных каналов, каждый из которых работает независимо от других случайное время до отказа. Время безотказной работы распределено по экспоненциальному закону с параметром λ . Отказавший элемент ремонтируется, причем время ремонта распределено по экспоненциальному закону с параметром μ . Записать матрицу инфинитезимальных характеристик для цепи Маркова, у которой под состояние системы понимается число рабочих каналов.

Ответы:

Задача 1.
$$\pi_1 = \frac{q}{1-q}$$
, $\pi_2 = \frac{p}{p+q}$
$$3\mu \qquad 0 \qquad 0$$

$$\lambda \qquad -(\lambda+2\mu) \qquad 2\mu \qquad 0$$

$$0 \qquad 2\lambda \qquad -(2\lambda+\mu) \qquad \mu$$

$$0 \qquad 0 \qquad 3\lambda \qquad -3\lambda$$

Информация о разработчиках

Пауль Светлана Владимировна, доктор физико-математических наук, доцент, профессор кафедры теории вероятностей и математической статистики НИ ТГУ

Моисеева Светлана Петровна, доктор физ.-мат. наук, профессор, кафедра теории вероятностей и математической статистики, заведующий кафедрой