Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

УТВЕРЖДЕНО: Директор А. В. Замятин

Оценочные материалы по дисциплине

Глубинное обучение

по направлению подготовки

02.03.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки: Искусственный интеллект и разработка программных продуктов

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП А.В. Замятин

Председатель УМК С.П. Сущенко

Томск – 2025

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2. Способен применять компьютерные/суперкомпьютерные методы, современное программное обеспечение, в том числе отечественного происхождения, для решения задач профессиональной деятельности.
- ПК-2. Способен проектировать базы данных, разрабатывать компоненты программных систем, обеспечивающих работу с базами данных, с помощью современных инструментальных средств и технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-2.1. Обладает необходимыми знаниями основных концепций современных вычислительных систем
- ИОПК-2.2. Использует методы высокопроизводительных вычислительных технологий, современного программного обеспечения, в том числе отечественного происхождения
- ИОПК-2.3. Использует инструментальные средства высокопроизводительных вычислений в научной и практической деятельности
- ИПК-2.2. Готов осуществлять поиск, хранение, обработку и анализ информации из различных источников и баз данных, представлять ее в требуемом формате с использованием информационных, компьютерных и сетевых технологий

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тесты;
- контрольная работа;

Тест (ИОПК-2.1, ИОПК-2.2., ИОПК-2.3)

- 1. Какая нейросетевая модель из перечисленных в лучшей степени подходит для прогнозирования временных последовательностей?
 - a) Single-Layer Perceptron
 - б) CNN
 - в) LSTM
 - r) Multi-layer Perceptron
- 2. Почему модели на сверточных нейронных сетях показывают наилучшие показатели по классификации объектов на изображениях по сравнению с другими моделями?
 - а) Они в высокой степени оптимизированы для обработки векторов с числовыми, а не категориальными признаками
 - б) Они обладают широким набором инструментов преобразования признакового пространства, которые может варьировать разработчик в модели
 - в) Они учитывают корреляцию смежных компонент вектора
 - г) Они используют существенно б*о*льшее число настраиваемых параметров, по сравнению с другими моделями
- 3. Каким главным недостатком обладает рекуррентная нейронная сеть?
 - а) Длительная процедура обучения
 - б) Невозможность обучения на категориальных данных
 - в) Сложность запоминания длительных последовательностей
 - г) Использование существенных вычислительных ресурсов
- 4. Какие меры не приводят к уменьшению переобучения нейросетевой модели?
 - а) Установка штрафов за большие значения весов нейронов сети

- б) Увеличение количества слоев сети
- в) Добавление шума в выборку
- г) Уменьшение количества нейронов сети
- 5. От чего в большей степени зависит успешное решение задачи классификации однослойным персептроном?
 - а) от размера выборки
 - б) от размерности признакового пространства
 - в) соотношения разделения выборки на обучающую и тестовую
 - г) от распределения объектов в пространстве признаков

Ключи: 1 в), 2 в), 3 в), 4 б), 5 г).

Критерии оценивания: тест считается пройденным, если обучающий ответил правильно как минимум на половину вопросов.

Контрольная работа (ИОПК-2.1, ИОПК-2.2., ИОПК-2.3, ИПК-2.2)

Контрольная работа состоит из 2 теоретических вопросов и 3 задач.

Перечень теоретических вопросов:

- 1. На что влияет размер эмбеддинга в LLM?
- 2. Что такое позиционное кодирование?
- 3. Из каких блоков состоит трансформер?
- 4. Реализация механизма внимания.
- 5. Классы задач обработки последовательностей.
- 6. Вычисление градиента в рекуррентной нейронной сети.
- 7. Штрафы по норме параметров.
- 8. Ранняя остановка.
- 9. Разряженные представления.
- 10. Использование прореживания.
- 11. Пакетная нормализация.
- 12. Усреднение Поляка.
- 13. Рекурсивные нейронные сети.
- 14. Нейронные эхо-сети.
- 15. Репрезентативная способность в автокодировщиках.
- 16. Жадное послойное предобучение без учителя.
- 17. Ограниченные машины Больцмана.
- 18. Глубокие сети доверия.
- 19. Глубокие машины Больцмана.
- 20. Ориентированные порождающие сети.
- 21. Проблемы оптимизации нейронных сетей.
- 22. Алгоритмы оптимизации с адаптивной скоростью обучения.
- 23. Приближенные методы оптимизации второго порядка.
- 24. Алгоритм итерации нейронной ценности
- 25. Архитектура глубокой Q-сети
- 26. Настройка двойной глубокой Q-сети
- 27. Дуэльные архитектуры в ценностно-ориентированном глубоком обучении с подкреплением.
 - 28. Методы приоритетного воспроизведения полезного опыта.
 - 29. Параллельное обновление политики в АЗС.
 - 30. Надежное прогнозирование преимущества GAE.
 - 31. Синхронное обновление политик а A2C.
 - 32. Формирование функции ценности в VPG.
 - 33. Максимизация ожидаемой выгоды и энтропии в «мягком актёре-критике».

- 34. Отличия методов градиента политик и «актёр-критик».
- 35. Генеративно-состязательная сеть Вассерштайна.
- 36. Особенности CycleGAN
- 37. Мультимодальные трансформеры
- 38. Диффузионные модели
- 39. Графовые нейронные сети.
- 40. Получение объяснений в глубоких моделях. Примеры задач:

Задача 1.

Построить регрессор, использующий слой RNN в качестве скрытого слоя для прогноза добычи жидкости и обводненности для каждой скважины на 120 суток вперед по предыдущим значениям признаков из выборки.

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество нейронов в слоях (ячеек), процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными. Сделать подбор количества предыдущих значений, используемых для прогнозной модели, для более точной оценки целевой переменной. Сделать эксперименты с прореживанием (Dropout).

Вычислить следующие метрики работы: R2, MSE, MAE для всех исследованных моделей.

Задача 2.

Построить нейросетевые модели – бинарный и многоклассовый классификатор, согласно Вашему варианту задачи.

Сначала построить бинарный классификатор для классов 0 и 1.

Набор данных: https://www.kaggle.com/datasets/emmarex/plantdisease Класс 0: Tomato, Класс 1: Potato, Класс 2: Pepper.

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество карт признаков, распределение слоёв, процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными для следующих задач.

Выполнить эксперименты с прореживанием (Dropout).

Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах.

Выполнить аугментацию данных и провести повторное обучение на новом расширенном наборе.

Сохранить лучшую архитектуру нейронной сети – бинарного классификатора.

Создать нейронную сеть — многоклассовый классификатор с использованием сверточной основы, обученной ранее на ImageNet (ResNet, VGG, Inception, Xception и т.д.). Выполнить дообучение модели в двух вариантах: заключительные полносвязные слои и fine-tuning. Сохранить лучшие модели. Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах из трех классов.

Обучить нейросетевые модели BERT, стека LSTM, двунаправленную LSTM, предсказывающие авторство текстов по фрагменту текстов Некрасова Н.А., Лермонтова М.Ю., Тютчева Ф.И.,

Для каждого выбранного поэта взять не менее 50 фрагментов из произведений, каждый фрагмент содержит не менее 100 символов.

Получить токенизатор и обученную модель BERT с HuggingFace.

Выполнить загрузку и предварительную обработку данных из текстов. Разделить каждую выборку на обучающую, тестовую и валидационную.

Добавить к архитектуре BERT полносвязный (или два полносвязных) слой(я) и обучить полученную модель в следующих вариантах:

- 1) Заморозить веса в BERT и настроить добавленный(е) полносвязный(ые) слой(и). (Это модель 1а)
 - 2) Выполнить Fine-tuning полученной архитектуры. (Это модель 1b)

Обучить вторую модель - стек LSTM (две последовательные ячейки LSTM, добавить Dropout) для классификации текстовых данных.

Обучить третью модель – двунаправленную ячейку LSTM для классификации текстовых данных.

Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах.

Критерии оценивания:

Результаты контрольной работы определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если даны правильные ответы на все теоретические вопросы и все задачи решены без ошибок.

Оценка «хорошо» выставляется, если корректные ответы даны на большую часть вопросов, но были отмечены неуверенность в ответе и информация представлена фрагментарно, также задачи были решены правильно с небольшими замечаниями.

Оценка «удовлетворительно» выставляется, если даны правильные ответы на половину теоретические вопросы и одна из задач решена с негрубой ошибкой.

Оценка «неудовлетворительно» выставляется, если корректные ответов меньше половины и задачи были решены неправильно.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет с оценкой в седьмом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей, проверяющих ИОПК-2.1, ИОПК-2.2., ИОПК-2.3, ИПК-2.2.

Первая часть представляет собой тест из 5 вопросов, проверяющих. Ответы на вопросы первой части даются путем выбора из списка предложенных.

Вторая часть содержит один вопрос. Ответ на вопрос второй части дается в развернутой форме.

Третья часть содержит 2 вопроса и оформленные в виде практических задач. Ответы на вопросы третьей части предполагают решение задач и краткую интерпретацию полученных результатов.

Перечень теоретических вопросов:

- 1. На что влияет размер эмбеддинга в LLM?
- 2. Что такое позиционное кодирование?
- 3. Из каких блоков состоит трансформер?
- 4. Реализация механизма внимания.
- 5. Классы задач обработки последовательностей.

- 6. Вычисление градиента в рекуррентной нейронной сети.
- 7. Штрафы по норме параметров.
- 8. Ранняя остановка.
- 9. Разряженные представления.
- 10. Использование прореживания.
- 11. Пакетная нормализация.
- 12. Усреднение Поляка.
- 13. Рекурсивные нейронные сети.
- 14. Нейронные эхо-сети.
- 15. Репрезентативная способность в автокодировщиках.
- 16. Жадное послойное предобучение без учителя.
- 17. Ограниченные машины Больцмана.
- 18. Глубокие сети доверия.
- 19. Глубокие машины Больцмана.
- 20. Ориентированные порождающие сети.
- 21. Проблемы оптимизации нейронных сетей.
- 22. Алгоритмы оптимизации с адаптивной скоростью обучения.
- 23. Приближенные методы оптимизации второго порядка.
- 24. Алгоритм итерации нейронной ценности
- 25. Архитектура глубокой Q-сети
- 26. Настройка двойной глубокой Q-сети
- 27. Дуэльные архитектуры в ценностно-ориентированном глубоком обучении с подкреплением.
 - 28. Методы приоритетного воспроизведения полезного опыта.
 - 29. Параллельное обновление политики в АЗС.
 - 30. Надежное прогнозирование преимущества GAE.
 - 31. Синхронное обновление политик а A2C.
 - 32. Формирование функции ценности в VPG.
 - 33. Максимизация ожидаемой выгоды и энтропии в «мягком актёре-критике».
 - 34. Отличия методов градиента политик и «актёр-критик».
 - 35. Генеративно-состязательная сеть Вассерштайна.
 - 36. Особенности CycleGAN
 - 37. Мультимодальные трансформеры
 - 38. Диффузионные модели
 - 39. Графовые нейронные сети.
 - 40. Получение объяснений в глубоких моделях.

Примеры задач:

Задача 1.

Построить регрессор, ячейку LSTM (или GRU) в скрытом слое, для прогноза добычи жидкости и обводненности для каждой скважины на 120 суток вперед по предыдущим значениям признаков из выборки.

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество нейронов в слоях (ячеек), процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными. Сделать подбор количества предыдущих значений, используемых для прогнозной модели, для более точной оценки целевой переменной. Сделать эксперименты с прореживанием (Dropout).

Вычислить следующие метрики работы: R2, MSE, MAE для всех исследованных моделей.

Задача 2.

Построить нейросетевые модели – бинарный и многоклассовый классификатор, согласно Вашему варианту задачи.

Сначала построить бинарный классификатор для классов 0 и 1.

Набор данных: https://www.kaggle.com/datasets/fpeccia/weed-detection-in-soybean-crops Класс 0: soybean, Класс 1: soil, Класс 2: grass

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество карт признаков, распределение слоёв, процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными для следующих задач.

Выполнить эксперименты с прореживанием (Dropout).

Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах.

Выполнить аугментацию данных и провести повторное обучение на новом расширенном наборе.

Сохранить лучшую архитектуру нейронной сети – бинарного классификатора.

Создать нейронную сеть — многоклассовый классификатор с использованием сверточной основы, обученной ранее на ImageNet (ResNet, VGG, Inception, Xception и т.д.). Выполнить дообучение модели в двух вариантах: заключительные полносвязные слои и fine-tuning. Сохранить лучшие модели. Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах из трех классов.

Задача 3.

Обучить нейросетевые модели BERT, стека LSTM, двунаправленную LSTM, предсказывающие авторство текстов по фрагменту текстов Фета А.А., Бунина И.А., Есенина С.А.

Для каждого выбранного поэта взять не менее 50 фрагментов из произведений, каждый фрагмент содержит не менее 100 символов.

Получить токенизатор и обученную модель BERT с HuggingFace.

Выполнить загрузку и предварительную обработку данных из текстов. Разделить каждую выборку на обучающую, тестовую и валидационную.

Добавить к архитектуре BERT полносвязный (или два полносвязных) слой(я) и обучить полученную модель в следующих вариантах:

- 1) Заморозить веса в BERT и настроить добавленный(е) полносвязный(ые) слой(и). (Это модель 1а)
 - 2) Выполнить Fine-tuning полученной архитектуры. (Это модель 1b)

Обучить вторую модель - стек LSTM (две последовательные ячейки LSTM, добавить Dropout) для классификации текстовых данных.

Обучить третью модель – двунаправленную ячейку LSTM для классификации текстовых данных.

Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах.

Критерии оценивания:

Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» выставляется, если даны правильные ответы на все теоретические вопросы и все задачи решены без ошибок.

Оценка «хорошо» выставляется, если корректные ответы даны на большую часть вопросов, но были отмечены неуверенность в ответе и информация представлена фрагментарно, также задачи были решены правильно с небольшими замечаниями.

Оценка «удовлетворительно» выставляется, если даны правильные ответы на половину теоретические вопросы и одна из задач решена с негрубой ошибкой.

Оценка «неудовлетворительно» выставляется, если корректные ответов меньше половины и задачи были решены неправильно.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций ИОПК-2.1, ИОПК-2.2., ИОПК-2.3, ИПК-2.2)

Тест

- 1. Какая нейросетевая модель из перечисленных в лучшей степени подходит для прогнозирования временных последовательностей?
 - a) Single-Layer Perceptron
 - б) CNN
 - в) LSTM
 - г) Multi-layer Perceptron
- 2. Почему модели на сверточных нейронных сетях показывают наилучшие показатели по классификации объектов на изображениях по сравнению с другими моделями?
 - а) Они в высокой степени оптимизированы для обработки векторов с числовыми, а не категориальными признаками
 - б) Они обладают широким набором инструментов преобразования признакового пространства, которые может варьировать разработчик в модели
 - в) Они учитывают корреляцию смежных компонент вектора
 - Γ) Они используют существенно б**о**льшее число настраиваемых параметров, по сравнению с другими моделями
- 3. Каким главным недостатком обладает рекуррентная нейронная сеть?
 - а) Длительная процедура обучения
 - б) Невозможность обучения на категориальных данных
 - в) Сложность запоминания длительных последовательностей
 - г) Использование существенных вычислительных ресурсов
- 4. Какие меры не приводят к уменьшению переобучения нейросетевой модели?
 - а) Установка штрафов за большие значения весов нейронов сети
 - б) Увеличение количества слоев сети
 - в) Добавление шума в выборку
 - г) Уменьшение количества нейронов сети
- 5. От чего в большей степени зависит успешное решение задачи классификации однослойным персептроном?
 - а) от размера выборки
 - б) от размерности признакового пространства
 - в) соотношения разделения выборки на обучающую и тестовую
 - г) от распределения объектов в пространстве признаков

Ключи: 1 в), 2 в), 3 в), 4 б), 5 г).

Задачи

Залача 1

Построить регрессор — стек двух слоёв с LSTM (или GRU) для прогноза добычи жидкости и обводненности для каждой скважины на 120 суток вперед по предыдущим значениям признаков из выборки.

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество нейронов в слоях (ячеек), процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными. Сделать подбор количества предыдущих значений, используемых для прогнозной модели, для более точной оценки целевой переменной. Сделать эксперименты с прореживанием (Dropout).

Вычислить следующие метрики работы: R2, MSE, MAE для всех исследованных моделей.

Задача 2

Построить нейросетевые модели – бинарный и многоклассовый классификатор, согласно Вашему варианту задачи.

Сначала построить бинарный классификатор для классов 0 и 1.

Набор данных: https://www.kaggle.com/datasets/emmarex/plantdisease Класс 0: Tomato_YellowLeaf_Curl_virus, Класс 1: Tomato_healthy, Класс 2: Tomato_Septoria_Leaf_spot

Выполнить загрузку и предварительную обработку данных из наборов. Разделить каждую выборку на обучающую, тестовую и валидационную. Произвести обучение набора нейросетевых архитектур, отличающихся разным набором параметров: количество карт признаков, распределение слоёв, процедур оптимизации:

Подобрать архитектуры нейронных сетей, которые с одной стороны позволяют получить модели с лучшими метриками качества работы, с другой стороны не являются избыточными и не переобученными для следующих задач.

Выполнить эксперименты с прореживанием (Dropout).

Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах.

Выполнить аугментацию данных и провести повторное обучение на новом расширенном наборе.

Сохранить лучшую архитектуру нейронной сети – бинарного классификатора.

Создать нейронную сеть — многоклассовый классификатор с использованием сверточной основы, обученной ранее на ImageNet (ResNet, VGG, Inception, Xception и т.д.). Выполнить дообучение модели в двух вариантах: заключительные полносвязные слои и fine-tuning. Сохранить лучшие модели. Привести кривые изменения функции потерь (Loss) и верности (Accuracy) во время обучения на обучающем и валидационном наборах из трех классов.

Теоретические вопросы:

- 1. На что влияет размер эмбеддинга в LLM?
- 2. Что такое позиционное кодирование?
- 3. Из каких блоков состоит трансформер?
- 4. Реализация механизма внимания.
- 5. Классы задач обработки последовательностей.
- 6. Вычисление градиента в рекуррентной нейронной сети.
- 7. Штрафы по норме параметров.
- 8. Ранняя остановка.

- 9. Разряженные представления.
- 10. Использование прореживания.
- 11. Пакетная нормализация.
- 12. Усреднение Поляка.
- 13. Рекурсивные нейронные сети.
- 14. Нейронные эхо-сети.
- 15. Репрезентативная способность в автокодировщиках.
- 16. Жадное послойное предобучение без учителя.
- 17. Ограниченные машины Больцмана.
- 18. Глубокие сети доверия.
- 19. Глубокие машины Больцмана.
- 20. Ориентированные порождающие сети.
- 21. Проблемы оптимизации нейронных сетей.
- 22. Алгоритмы оптимизации с адаптивной скоростью обучения.
- 23. Приближенные методы оптимизации второго порядка.
- 24. Алгоритм итерации нейронной ценности
- 25. Архитектура глубокой Q-сети
- 26. Настройка двойной глубокой Q-сети
- 27. Дуэльные архитектуры в ценностно-ориентированном глубоком обучении с подкреплением.
 - 28. Методы приоритетного воспроизведения полезного опыта.
 - 29. Параллельное обновление политики в АЗС.
 - 30. Надежное прогнозирование преимущества GAE.
 - 31. Синхронное обновление политик а A2C.
 - 32. Формирование функции ценности в VPG.
 - 33. Максимизация ожидаемой выгоды и энтропии в «мягком актёре-критике».
 - 34. Отличия методов градиента политик и «актёр-критик».
 - 35. Генеративно-состязательная сеть Вассерштайна.
 - 36. Особенности CycleGAN
 - 37. Мультимодальные трансформеры
 - 38. Диффузионные модели
 - 39. Графовые нейронные сети.
 - 40. Получение объяснений в глубоких моделях.

Информация о разработчиках

Аксёнов Сергей Владимирович, канд.техн.наук, кафедра теоретических основ информатики НИ ТГУ, доцент