Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Основы системного анализа и моделирование технологических процессов

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Цифровая химия**

Форма обучения **Очная**

Квалификация **Инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А. С. Князев

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

БК-2 Способен использовать научные методы для решения профессиональных задач.

ОПК-3 Способен использовать вычислительные методы и адаптировать существующие программные продукты для решения задач профессиональной деятельности.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

РОБК 2.2 Умеет выстраивать систематическую и логическую цепочку анализа и принимаемых решений в контексте задачи профессиональной деятельности

РООПК-3.1 Знает стандартные и оригинальные программные продукты, современные вычислительные методы

РООПК-3.2 Умеет работать с различными программными продуктами, используемыми в профессиональной области, эффективно использовать их функциональность для обработки данных, моделирования, анализа и визуализации информации при необходимости адаптируя их для решения задач профессиональной деятельности

РООПК-3.3 Умеет применять современные вычислительные методы для обработки данных химического эксперимента, моделирования свойств полимерных и композиционных веществ и материалов, а также процессов с их участием

2. Задачи освоения дисциплины

- Освоить основные понятия, принципы и концепции проведения системного анализа;
- Освоить иерархическую структуру и основные модели химического производства;
- Освоить основные принципы, модели и этапы при разработке интеллектуальных систем;
 - Освоить принципы и этапы математического описания XTП;
- Освоить методы и подходы к системному анализу и оптимизации XTП по заданным критериям.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых: -лекции: 16 ч.

-практические занятия: 16 ч.

в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Основные понятия и определения

Основные понятия и определения. Определения системного анализа, цели, методы и принципы. Понятие система и элемент в привязке к ХТП. Иерархическая структура ХТП. Разбор решения задачи методом системного анализа.

Тема 2. Модели производства

Химические, графические, математические модели. Принципы построения, разбор примеров. Дерево переделов, принципы и цели разработки.

Тема 3. Виды моделей. Этапы разработки

Методы представления, обработки и анализа информации. Интеллектуальные системы, этапы разработки, используемые модели. Логические, Фреймовые, Семантические и пр. основные понятия и принципы разработки, обработки и представления информации.

Тема 4. Концептуальные подходы системного анализа

Концепции и основные подходы в системном анализе при их реализации. Концепция глубины переработки, минимизации и/или максимизации параметров. Примеры реализации концепций.

Тема 5. Синтез математического описания XTП

Этапы математического описания, иерархическая принцип, моделирование химических превращений. Описание взаимосвязанных явлений и процессов при моделировании XTC, уравнение Умова. Разработка алгоритмов, определение параметров регуляризации.

Тема 6. Оптимизация XTП

Задача оптимизации, основные этапы системного анализа при оптимизации. Определение и классификация критериев. Одно и многокритериальный анализ. Методы решения многокритериального анализа. Примеры реализации многокритериального анализа на примере каталитических процессов.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости лекций и практических занятий, проведения занятий с презентациями студентов по индивидуальному заданию и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в первом семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из трех частей. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru/enrol/index.php?id=33441
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Кафаров В.В., Дорохов И. Н., Липатов Л. Н. Системный анализ про-цессов химической технологии. М.: Наука, 1989. ч. 1, 2, 3;
- Мешалкин В.П. Экспертные системы в химической технологии. М.: Химия, 1995.-368 с.;
- Кафаров В.В., Глебов М. Б. Математическое моделирование основных процессов химических производств. М.: Высшая школа, 1991. 400 с;
- Бесков В.С. Общая химическая технология и основы промышлен-ной экологии. М.: Химия, 1999. 472 с;
- Бесков В. С. Моделирование каталитических процессов и реакторов. М.: Химия, $1991.-252\ c$
 - б) дополнительная литература:
- Кравцов А. В., Иванчина Э. Д. Интеллектуальные системы в химиче-ской технологии и инженерном образовании. Новосибирск: Наука, 1997. 200 с.;
- Слинько М. Г. Пленарные лекции конференции по химическим реакторам. Новосибирск: «Химреактор 13», 1996. 180 с.
- Потехин В. М. Основы теории химических процессов технологии органических веществ и нефтепереработки / Потехин В. М., Потехин В. В.. Санкт-Петербург : Лань, 2021. 896 с.. URL: https://e.lanbook.com/book/168720. URL: https://e.lanbook.com/img/cover/book/168720.jpg
 - в) ресурсы сети Интернет:
 - http://elibrary.ru
 - https://login.webofknowledge.com
- Общероссийская Сеть Консультант Π люс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - upaфический редактор MS Visiso/AutoCAD/Компас-3D;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

- Электронная библиотека (репозиторий) ТГУ
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитория для выполнения практических занятий, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации, а также персональными компьютерами с установленным пакетом MS Office (MS Word, MS Excel) графическим редактором (MS Visiso/AutoCAD/Компас-3D) для выполнения практических заданий (аудит. № 402 или 405 корпуса № 6 НИ ТГУ).

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Норин Владислав Вадимович, ведущий специалист отдела предпроектной подготовки ООО «ИХТЦ», ассистент кафедры неорганической химии ХФ НИ ТГУ;

Чернякова Екатерина Сергеевна, к.т.н., доцент отделения химической инженерии НИ ТПУ.