Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Расширенное использование компьютерных моделирующих систем

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Цифровая химия**

Форма обучения **Очная**

Квалификация **Инженер-исследователь**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП А. С. Князев

Председатель УМК В.В. Шелковников

Томск – 2024

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен выполнять комплексные экспериментальные и расчетнотеоретические исследования в избранной области химии или смежных наук с использованием современных приборов, программного обеспечения и баз данных профессионального назначения;
- ОПК-3. Способен использовать вычислительные методы и адаптировать существующие программные продукты для решения задач профессиональной деятельности;
- ПК-2. Способен к реализации и управлению химическими процессами на базе математического прогнозирования и моделирования.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК-1.2 Знает теоретические основы инструментальных методов исследования веществ для грамотного планирования научного исследования
- РООПК-3.1 Знает стандартные и оригинальные программные продукты, современные вычислительные методы

РООПК-3.3 Умеет применять современные вычислительные методы для обработки данных химического эксперимента, моделирования свойств полимерных и композиционных веществ и материалов, а также процессов с их участием

РОПК-2.1 Знает современные технологии производства химической продукции

2. Задачи освоения дисциплины

- Освоить математический аппарат статистической обработки данных.
- Освоить обработку массивов данных применительно к химико-технологчиеским процессам.
- Освоить регрессионный анализ применительно к химико-технологчиеским процессам.
- Освоить базовую последовательность статистической оптимизации химикотехнологических процессов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам:

- Неорганическая химия;
- Органическая химия;
- Физическая химия;
- Актуальные задачи современной химии;
- Основы системного анализа и моделирование технологических процессов;
- Математическое моделирование технологических процессов с использованием математического пакета Aspen.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- -лекции: 16 ч.
- -практические занятия: 16 ч.
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел 1. Оптимизация и возможности FORTRAN

Тема 1. Оптимизация: общие сведения

Введение, оформление проблем оптимизации. Понятие целевой функции, ограничений, пределы поиска, классификация проблем оптимизации, доступные алгоритмы для их решения.

Tema 2. FORTRAN: общие сведения

Введение к FORTRAN, общая организация работы с FORTRAN, доступные структуры работы с FORTRAN в среде Aspen Plus: заявления и динамические библиотеки.

Тема 3. Оптимизации в среде Aspen Plus

Составление и решение стандартных задач оптимизации в среде Aspen Plus с применением интегрированных возможностей FORTRAN.

Тема 4. Анализ чувствительности в среде Aspen Plus

Cоставление и решение стандартных задач анализа чувствительности в среде Aspen Plus с применением интегрированных возможностей FORTRAN.

Тема 5. Калькуляторы и In-Line FORTRAN

Использование пользовательских блоков FORTRAN-калькуляторов при расчете и анализе технологических схем.

Раздел 2. Aspen Plus: User Models

Тема 1. Введение

Введение к пользовательским модулям в среде Aspen Plus, организация работы по составлению пользовательских модулей с компиляцией и линковкой динамических библиотек, общая структура исходного кода FORTRAN при создание пользовательских модулей.

Тема 2. Пользовательские модули химические кинетики

Работа с пользовательскими модулями для расчета химической кинетики реакторов и реакционно-ректификационных колон – USER и REAC-DIST модули.

Тема 3. Пользовательские модули контактирующих устройств

Работа с пользовательскими модулями для расчета колонных контактирующих устройств — тарелки и насадки.

Тема 4. Пользовательские модули равновесия жидкость – жидкость

Работа с пользовательскими модулями для расчета равновесия жидкость жидкость.

Раздел 3. Сервер автоматизации ActiveX

Тема 1. Введение

Общие сведения по возможности внешнего управления Aspen Plus при помощи сервер автоматизации ActiveX. Структура переменных математической модели в Aspen Plus (Variable Explorer), организация общения между Aspen Plus, сервером ActiveX и внешними элементами.

Тема 2. Работа с Microsoft Excel VBA

Получение доступа и управление объектами и методами Aspen Plus с использованием Microsoft Excel VBA. Пример MINLP оптимизации реакционноректификационной колонны синтеза ЭТБЭ.

Тема 3. Работа с другими языками программирования

Рассмотрение возможности получения доступа и управления объектами и методами Aspen Plus с использованием сторонних языков программирования. Алгоритм калибровки и оптимизации моделей установок пользовательскими кинетическими модулями USER и REAC-DIST. Алгоритм NLP оптимизации процессов.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости лекций и практических занятий, проведения занятий с презентациями студентов по индивидуальному заданию и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в третьем семестре проводится в устной форме с последующей презентацией и защитой индивидуального курсового задания с презентацией и ответами на вопросы аудитории. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на образовательной сайте ΤГУ разделе «Информация об программе» https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-метолическое обеспечение

- а) Электронный учебный курс по дисциплине в среде электронного обучения iDO
- https://lms.tsu.ru
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Belegundu, Ashok D. Chandrupatla, Tirupathi R.. (2011). Optimization Concepts and Engineering (2nd Edition). Cambridge University Applications Press. https://app.knovel.com/hotlink/toc/id:kpOCAEE00K/optimization-concepts/optimizationconcepts/;

- $-\,Rao,\,Singiresu\,S..\,$ (2009). Engineering Optimization Theory and Practice (4th Edition). John Wiley & Sons. Retrieved from https://app.knovel.com/hotlink/toc/id:kpEOTPE014/engineering-optimization/engineering-optimization;
- Справочник по среде моделирования технологических процессов Aspen Plus V12: Aspen Plus 12.1 User Guide https://esupport.aspentech.com/S_Article?id=000064707;
- Справочник по среде моделирования Aspen Plus V12: Aspen Plus V12.1 User Models Reference Manual https://esupport.aspentech.com/S_Article?id=000098437;

б) дополнительная литература:

- W. L. Luyben and C.-C. Yu, Reactive Distillation Design and Control. New Jersey: John Wiley & Sons, Inc., 2008.
- K. Sundmacher and a Kienle, Reactive distillation: status and future directions, vol. 3. 2006.
 - W. L. Luyben, Reactive Distillation. Elsevier Inc., 2006.
- G. J. Harmsen, "Reactive distillation: The front-runner of industrial process intensification. A full review of commercial applications, research, scale-up, design and operation," Chem. Eng. Process. Process Intensif., vol. 46, no. 9 SPEC. ISS., pp. 774−780, 2007, doi: 10.1016/j.cep.2007.06.005.
- G. J. Harmsen and L. A. Chewter, "Industrial applications of multi-functional, multi-phase reactors," Chem. Eng. Sci., vol. 54, no. 10, pp. 1541–1545, May 1999, doi: 10.1016/S0009-2509(99)00082-2.

в) ресурсы сети Интернет:

- Справочник по языку FORTRAN 77 https://docs.oracle.com/cd/E19957-01/805-4939/index.html
 - Справочник по языку Python https://docs.python.org/3/reference/;
 - Справочник по библиотеке SciPy https://docs.scipy.org/doc/scipy/reference/;
- Справочник по библиотеке pywin32 http://timgolden.me.uk/pywin32-docs/PyWin32.html;
 - Справочник по компилятору GNU Fortran https://gcc.gnu.org/onlinedocs/gfortran/;
- Справочник по VBA для Office https://docs.microsoft.com/ru-ru/office/vba/api/overview/
- Общероссийская Сеть Консультант Плюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - среда моделирования технологических процессов Aspen Plus V12;
- Язык программирования Python 3.6.8 https://www.python.org/downloads/release/python-368/;
 - Среда разработки для Spyder https://www.spyder-ide.org/;
 - Библиотека оптимизации NOMAD https://www.gerad.ca/en/software/nomad/;
 - Библиотека SciPy для Python https://scipy.org/install/;
 - Библиотека pywin32 (ActiveX) для Python https://pypi.org/project/pywin32/;
 - Компилятор GNU Fortran https://gcc.gnu.org/fortran/
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).

б) информационные справочные системы:

- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ
 http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 3FC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Норин Владислав Вадимович, директор НОЦ «ГПН-ТГУ», ведущий специалист отдела предпроектной подготовки ООО «ИХТЦ», ассистент кафедры неорганической химии $\rm X\Phi$ НИ ТГУ;

Карлос Энрике Гарсия Серпас, специалист отдела предпроектной подготовки OOO «ИХТЦ»