Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Квантовая теория поля

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

 Π K-1 — Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.
- ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию изразличных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.
- ИПК-1.3 Владеет навыками аналитической переработки информации, проведения исследований с помощью современной аппаратуры и информационных технологий, обобщения и представления результатов, полученных в процессе решения задач исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат и методы квантовой теории поля.
- Научиться применять понятийный аппарат и методы квантовой теории поля для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для изучения и понимания материала данной дисциплины обучающийся должен владеть основными понятиями квантовой теория поля, методами математической физики, методами квантования систем со связями.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 16 ч.;
- -практические занятия: 16 ч.;
- в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Представление амплитуд переходов функциональным интегралом в моделях с бозевскими полями.

Функциональный интеграл в координатном представлении. Функциональный интеграл в представлении Баргманна-Фока. Свойства функциональный интегралов в КТП. Производящий функционал матрицы рассеяния.

Тема 2. Функциональный интеграл для производящего функционала функциий Грина. Представление производящего функционала функций Грина функциональным интегралом.

Тема 3. Антикоммутирующие переменные и фермионные поля.

Понятие об алгебре и анализе с антикоммутирующими переменными. Определение и свойства функционального интеграла по антикоммутирующим полям. Представление производящего функционала функций Грина фермионых полей функциональным интегралом.

Тема 4. Петлевое разложение эффективного действия.

Определение эффективного действия. Связь эффективного действия с производящим функционалом связных функций Грина. Петлевое разложение. Формальное выражение для однопетлевой поправки к эффективному действию. Эффективный потенциал Коулмена-Вайнберга. Энергетическая интерпретация эффективного потенциала.

Тема 5. Квантование калибровочных теорий специального вида. Калибровочные теории специального и общего видов. Физические величины в калибровочных теориях. Постановка задачи квантования калибровочной теории.

Тема 6. Метод Фаддеева-Попова.

Мера функционального интеграла калибровочной теории специального вида после фиксации калибровки. Духи Фаддеева-Попова. Действие Фаддеева-Попова. Квантование модели Янга-Миллса в R кси калибровке. Правила Фейнмана.

Тема 7. БРСТ-симметрия.

БРСТ-симметрия производящего функционала функций Грина калибровочной теории специального типа. Независимость от выбора калибровки средних от калибровочно-инвариантных операторов.

Тема 8. Теория перенормировок.

Двухпетлевое эффективное действие модели лямбда фи 4. Регуляризация, перенормировка и устранение однопетлевых ультрафиолетовых расходимостей. Контрчлены. Условия нормировки. Общая процедура построения перенормированной теории возмущений. Основные теоремы теории перенормировок в квантовой теории поля. Устранение двухпетлевых расходимостей в модели лямбда фи 4. Индекс поверхностной расходимости и перенормируемость теории по индексу. Суперперенормируемые, перенормируемые и неперенормируемые теории. Релятивистски-инвариантные перенормируемые теории в D=4.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится с применением балльно-рейтинговой системы, включающей контроль посещаемости, результаты выполнения контрольных работ, заданий и тестов по материалам курса, и фиксируется в форме баллов (нарастающим итогом): посещаемость — максимальный балл 10, выполнение контрольных заданий — 40, тестов — 10. Контрольная точка проводится не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в 1 семестре проводится в устной форме по экзаменационным билетам.

Результаты экзамена определяются оценкой, исходя из результатов ответов на экзамене (60%) и текущей аттестации в течение семестра (40%) в соответствии с балльной

шкалой оценивания: количество набранных баллов более 80 — «отлично», от 65 до 79 — «хорошо», от 50 до 64 — «удовлетворительно, менее 50 баллов — «неудовлетворительно».

Экзаменационный билет состоит из двух частей.

Первая часть представляет содержит основной вопрос, проверяющий сформированность компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответы даются в развернутой форме, включая практические задачи.

Вторая часть содержит дополнительный вопрос из списка контрольных вопросов по курсу (приведен в разделе 11), проверяющий соответствие индикатору достижения компетенций ИПК-1.1, ИПК-1.2, ИПК-1.3. Ответ на вопрос второй части дается в краткой форме, включающей краткую интерпретацию полученных результатов.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронные учебные курсы по дисциплине в электронном университете «Moodle»: https://moodle.tsu.ru/course/view.php?id=25910
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских занятий по дисциплине.
 - д) Банк задач для самостоятельного решения по темам практических занятий.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. С. Вайнберг. Квантовая теория полей (в 3-х томах). Т.1-2//пер с англ. под ред. Б.Л. Воронова, 2001 г; электронная версия; пер с англ. под ред. В.Ч. Жуковского, М., Физматлит. 2003 г. 648 с.
- 2. М. Пескин, Д. Шредер. Введение в квантовую теорию поля//Москва-Ижевск. РХД (Регулярная и хаотическая динамика). 2001. 784 с.
- 3. К. Ициксон, Ж.-Б. Зюбер. Квантовая теория поля (в 2-х томах)//М. Мир. 1984. 448+400 с.
- 4. Л. Райдер. Квантовая теория поля/М. Мир. 1987. 512 с.; Волгоград. Платон. 1998. 512 с.
- 5. Дж. Д. Бьеркен, С.Д. Дрелл. Релятивистская квантовая теория. Том 2. Релятивистские квантовые поля//М. Наука. 1978. 408 с.
- 6. П. Рамон. Теория поля//М. Мир. 1984. 332 с.; М. Бибфизмат. 1995. 332 с.
- б) дополнительная литература:
- 1. Н.Н. Боголюбов, Д.В. Ширков. Введение в теорию квантованных полей//М. Наука. 1973. 416 с.
- 2. Н.Н. Боголюбов, А.А. Логунов, И.Т. Тодоров. Основы аксиоматического подхода в квантовой теории поля//М. Наука. 1969. 424 с.
- 3. Б.С. Девитт. Динамическая теория групп и полей//М. Наука. 1987. 288 с.
- 4. W. Siegel. Fields.//http://xxx.lanl.gov/e-print/hep-th/9912205. 738 p.
- 5. А.Н. Кушниренко. Введение в квантовую теорию поля//М. Высшая школа. 1983. 319 с.
- 6. С. Швебер. Введение в релятивистскую квантовую теорию поля//М. Ин.лит. 1963. 842 с.
- 7. П.А.М. Дирак. Лекции по квантовой теории поля//М. Мир. 1971. 243 с.; М. Меркурий-ПРЕСС. 2000. 242 с.
- 8. В. Паули. Общие принципы волновой механики//Москва-Ленинград. ОГИЗ. 1947. 332 с.
- 9. В.Б. Берестецкий, Е.М. Лифшиц, Л.П. Питаевский. Квантовая электродинамика//М. Наука. 1989. 723 с.
- 10. А.И. Ахиезер, В.Б. Берестецкий. Квантовая электродинамика//М. Наука. 1981. 432 с.
- 11. В.Н. Грибов. Квантовая электродинамика//Москва-Ижевск. РХД. 2001. 288 с.

- 12. Р. Фейнман. Квантовая электродинамика//М. Мир. 1964. 219 с.; Новокузнецк. НФМИ. 2000. 218 с.
- 13. Р. Фейнман. Теория фундаментальных процессов//М. Наука. 1978. 199 с.
- 14. Г.А. Сарданашвили. Современные методы теории поля (в 4-х томах)//М. УРСС. 1996-1999. 4+167+214+c.
- 15. Дж. Коллинз. Перенормировка//М. Мир. 1988. 446 с.
- 16. John Collins. The problem of scales: renormalization and all that//http://xxx.lanl.gov/e-print/hep-ph/9510276. 52 p.
- 17. О.И. Завьялов. Перенормированные диаграммы Фейнмана//М. Наука. 1979. 317 с.
- 18. А.Н. Васильев. Функциональные методы в квантовой теории поля и статистике//Ленинград. ЛГУ. 1976.
- 19. В.Н. Попов. Континуальные интегралы в квантовой теории поля и статистической физике//М. Атомиздат. 1976 г. 256 с.
- 20. Р. Фейнман, А. Хибс. Квантовая механика и интегралы по траекториям//М. Мир. 1968. 382 с.; Новокузнецк. НФМИ. 1998. 380 с.
- 21. А.А. Славнов, Л.Д. Фаддеев. Введение в квантовую теорию калибровочных полей//М. Наука. 1988. 267 с.
- 22. Д.М. Гитман, И.В. Тютин. Каноническое квантование полей со связями//М. Наука. 1986. 215 с.
- 23. К. Хуанг. Кварки, лептоны и калибровочные поля//М. Мир. 1985. 382 с.
 - в) ресурсы сети Интернет:

http://arxiv.org База электронных препринтов: разделы hep-th, hep-ph, qr-qc.

http://www.damtp.cam.ac.uk/user/tong/qft.html. Кэмбриджские лекции по квантовой теории поля.

https://www.physics.harvard.edu/events/videos/Phys253. Гарвардские лекции С. Колмена по квантовой теории поля.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook); системы компьютерной вёрстки LaTex;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного типа, практических занятий, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате, оснащенные системой («Актру»).

15. Информация о разработчиках

Казинский Петр Олегович, доктор физико-математических наук, доцент, кафедра квантовой теории поля физического факультета ТГУ, профессор.