Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Лаборатории специализации по динамике ИСЗ

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавриат**

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОП О.Н.Чайковская

Председатель УМК О.М. Сюсина

Томск – 2023

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-3 Способен использовать современные информационные технологии и программные средства при решении задач профессиональной деятельности, соблюдая требования информационной безопасности..

ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 3.2 Применяет общее и специализированное программное обеспечение для теоретических расчетов и обработки экспериментальных данных

ИПК 1.2 Владеет практическими навыками использования современных методов исследования в выбранной области

2. Задачи освоения дисциплины

- формирование основных представлений о практическом применении методов теории движения ИСЗ;
- освоение методов разработки программного обеспечения для научных исследований.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по диспиплине

Семестр 8, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: Динамика космического полета, Небесная механика, Технология программирования, Фундаментальная астрометрия.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часа, из которых:

- лекции: 0 ч.;
- семинарские занятия: 0 ч.
- практические занятия: 0 ч.;
- лабораторные работы: 48 ч.
 - в том числе практическая подготовка: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема №1: Построение орбиты и трассы ИСЗ

– Задача двух тел и ее применение. Доработка программы для решения задачи двух тел в геоцентрической системе координат (CRS)

- Получение координат спутника в системе координат CRS, используя задачу двух тел. Построить проекцию орбиты на координатные оси в инерциальной системе координат (невозмущенный случай)
 - Переход от CRS системы координат к Земной опорной системе координат (TRS)
 - Переход от TRS системы координат к CRS
 - Построение трассы ИСЗ
 - Написание отчета.

Тема 2: Работа с КНС ГЛОНАСС.

- Работа с альманахом космической навигационной системы (КНС) ГЛОНАСС. Получение координат спутников системы ГЛОНАСС в инерциальной системе координат на заданный момент времени, используя эфемериды, представленные в альманахе КНС ГЛОНАСС.
- Проверка координат по данным Информационно-аналитического центра координатно-временного и навигационного обеспечения ФГУП ЦНИИмаш (https://www.glonass-iac.ru/GLONASS/)
 - Построение орбит и трасс КА ГЛОНАСС
- Переход в топоцентрическую систему координат из CRS системы координат.
 Создание процедуры перехода
- Создание процедуры перехода от топоцентрической системы координат к инерциальной (CRS)

Построение зоны видимости. Определение номеров спутников, попадающих в зону видимости с наземного пункта наблюдения (численным и графическим способом).

- Условие видимости с заданного спутника на спутник. (Вывести условие видимости с заданного спутника на спутники системы ГЛОНАСС. Определить число видимых спутников системы ГЛОНАСС и их номера с выбранного спутника на заданный момент времени.) (проверить графическим способом).
 - Написание отчета.

Тема 3. Тройная засечка

Определение координат спутника методом тройной засечки по известным координатам трех спутников и расстояниям до них от искомого ИСЗ.

- Моделирование наблюдений
- Составление алгоритма и программы
- Решение задачи определения координат спутника методом тройной засечки посредством разработанного ПО;
 - Написание отчета.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, отчетов по результатам выполнения лабораторных работ (с обязательным листингом разработанных программ либо предоставлением самих программ с возможностью проверки кода) и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценивание выполнения лабораторной работы

Оценка	Критерий оценивания	
отлично	Своевременное выполнение лабораторной работы,	
	Индивидуальный код ПО.	
	Отчет, отражающий цель, методику и основные результаты.	
хорошо	Несвоевременное выполнение лабораторной работы либо сдача лабораторной работы со второго раза.	
	Индивидуальный код ПО.	
	Отчет, отражающий цель, методику и основные результаты.	
удовлетворительно	Несвоевременное выполнение лабораторной работы либо сдача лабораторной работы с третьей и более попыток,	
	Отчет, отражающий цель, методику и основные результаты.	
	Частично заимствованный код программы других студентов	
неудовлетворительно	Отсутствие отчетов по лабораторным работам либо чужой код программ.	

При выполнении лабораторной работы по теме 2, необходимо также сдавать промежуточные отчеты.

На основе отчетов по лабораторным работам проверяется освоение обучающимся дисциплины по индикаторам: ИОПК 3.2, ИПК 1.2.

Оценка текущей успеваемости определяется как среднее арифметическое из оценки учебной деятельности студента.

Оценка Критерий оценивания

отлично среднее арифметическое 4.7-5

хорошо среднее арифметическое 3.7-4.6

среднее арифметическое 3-3.6

удовлетворительно

неудовлетворительно

Оценивание текущей успеваемости

10. Порядок проведения и критерии оценивания промежуточной аттестации

среднее арифметическое <3

Студент допускается до сдачи зачета при условии сдачи индивидуальных отчетов по всем лабораторным работам и листингов разработанных программ либо самих программ (с возможностью проверки кода).

В случае своевременной и успешной сдачи всех лабораторных работ возможно получить оценку без сдачи зачета, как среднее арифметическое из оценок за каждую лабораторную работу. В случае, если студента не устраивает оценка, определяемая по оценкам текущего контроля, необходимо сдать зачет.

Зачет с оценкой проводится в форме двух практических заданий по задачам курса.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Задания на зачете подобраны таким образом, чтобы проверить освоение обучающимся дисциплины по индикаторам: ИОПК 3.2, ИПК 1.2..

Оценка промежуточной аттестации определяется как среднее арифметическое из

оценок за выполнение заданий на зачете и средней оценки текущей успеваемости в соответствии с таблицей приведенной ниже, при условии, что все оценки не ниже «удовлетворительно». В случае, если одна из оценок «неудовлетворительно», общая оценка не может быть выше «удовлетворительно».

^		
Опенивание п	ромежуточной	аттестании
оценивание и	poment, to mon	аттостации

Оценка	Критерий оценивания	
отлично	среднее арифметическое 4.7-5	
хорошо	среднее арифметическое 3.7-4.6	
	среднее арифметическое 3-3.6	
удовлетворительно	и/или одна из оценок на экзамене и итоговая за текущий контроль - «неудовлетворительно»	
	среднее арифметическое <3,	
неудовлетворительно	(от двух и более оценок «неудовлетворительно»)	

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=21910
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План лабораторных занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Бордовицына Т.В., Авдюшев В.А.. Теория движения искусственных спутников Земли. Аналитические и численные методы: учебное пособие. Томск. Изд-во Том. ун-та. 2016.—262 с.
- Авдюшев В.А. Численное моделирование орбит небесных тел. Томск: Издательский Дом Томского государственного университета, 2015. 336 с.
- Бордовицына Т.В. Технологии глобального позиционирования (GPS/ГЛОНАСС)/Электронное учебное пособие. Томск.2007 URL: http://astro.tsu.ru/TGP/index.html
 - ИКД ГЛОНАСС. Общее описание системы с кодовым разделением. Редакция
 1.0
- -М.: AO «Российские космические системы» 2016. 133 с. URL: https://russianspacesystems.ru/bussines/navigation/glonass/interfeysnyy-kontrolnyy-dokument/
- ГОСТ 7.32-2017 СИБИД. Отчет о научно-исследовательской работе. Структура иправила оформления
 - б) дополнительная литература:
- Бордовицына Т.В., Авдюшев В.А.. Теория движения искусственных спутников Земли. Аналитические и численные методы: учебное пособие. Томск. Изд-во Том. ун-та. 2007.—220 с.
 - Аксенов Е.П. Теория движения искусственных спутников Земли. М.: Наука, 1977.

360 c.

Бордовицына Т.В. Современные численные методы в задачах небесной механики.

М.: Наука, 1984. 136 с.

– Брумберг В.А. Аналитические алгоритмы небесной механики. М.: Наука, 1980.

208 c.

- в) ресурсы сети Интернет:
- Сайт кафедры http://astro.tsu.ru
- Официальный сайт Информационно-аналитический центр координатновременного и навигационного обеспечения АО ЦНИИмаш https://www.glonass-iac.ru/about/feedback/
 - Эфемериды КНС ГЛОНАСС https://www.glonass-iac.ru/GLONASS/ephemeris.php
 - Данные для проверки https://www.glonass-iac.ru/GLONASS/currentPosition.php

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ –

http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

– Электронная библиотека (репозиторий) ТГУ –

http://vital.lib.tsu.ru/vital/access/manager/Index

- ЭБС Лань http://e.lanbook.com/
- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- 9EC ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Александрова Анна Геннадьевна, к.ф.-м.н.

Галушина Татьяна Юрьевна, к.ф.-м.н.