Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Вычислительная математика

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки: «Фундаментальная физика»

Форма обучения **Очная**

Квалификация **Бакалавриат**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-1 Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности.

ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 1.2 Применяет физические и математические модели и методы при решении теоретических и прикладных задач

ИПК 1.2 Владеет практическими навыками использования современных методов исследования в выбранной области

2. Задачи освоения дисциплины

- Ознакомить студентов с широко применяемыми на практике численными методами для исследования физических процессов и явлений;
- Развить навыки в реализации численных методов для решения прикладных задач по профилю ООП.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 5, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: математический анализ; линейная алгебра и аналитическая геометрия; дифференциальные уравнения; программирование; технологии программирования.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

- лекции: 32 ч.;
- семинарские занятия: 0 ч.
- практические занятия: 32 ч.;
- лабораторные работы: 0 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Введение

Задачи вычислительной математики. Численные методы и их отличие от приближенных аналитических методов.

Тема 2. Основы теории погрешностей

Численное моделирование и возникновение погрешностей. Определения погрешностей и их оценивание. Запись чисел на компьютере. Обусловленность задачи.

Тема 3. Скалярные нелинейные уравнения

Метод дихотомии. Метод хорд. Метод Ньютона. Метод секущих. Метод простых итераций.

Тема 4. Системы нелинейных уравнений

Метод Ньютона. Метод простых итераций. Метод Гаусса-Зейделя.

Тема 5. Системы линейных уравнений

Метод Гаусса. Вычисление определителей. Обращение матриц. Плохо обусловленные системы. Метод простых итераций. Метод Гаусса—Зейделя.

Тема 6. Проблема собственных значений

Степенной метод. Метод вращений Якоби.

Тема 7. Задачи оптимизации

Метод (наискорейшего) градиентного спуска. Метод Ньютона. Демпфирование. Метод покоординатного спуска Гаусса–Зейделя.

Тема 8. Интерполяция

Линейное интерполирование. Интерполяция каноническим многочленом. Интерполяция Лагранжа. Интерполяция Ньютона. Интерполяция Эйткена—Невилла. Сходимость полиномиальной интерполяции. Интерполяция по узлам Чебышева. Сплайнинтерполяция.

Тема 9. Задача наименьших квадратов

Линейная аппроксимация. Нелинейная аппроксимация.

Тема 10. Численное дифференцирование

Дифференцирование интерполяционных формул. Метод неопределенных коэффициентов.

Тема 11. Численное интегрирование

Квадратурные формулы. Метод неопределенных коэффициентов. Квадратурные формулы Ньютона–Котеса. Квадратурные формулы Гаусса. Составные квадратурные формулы. Стохастический метод.

Тема 12. Обыкновенные дифференциальные уравнения

Метод Тейлора. Методы Рунге-Кутты. Методы Адамса.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, выполнения практических заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Примеры практических задач (ИОПК-1.2., ИПК 1.2.)

1. Исследовать скорость сходимости (требуемое количество итераций I) метода а) дихотомии и хорд; б) Ньютона; в) секущих и г) простых итераций для численного решения уравнения Кеплера $M=E-e\sin E$ с точностью до $\Delta E=10^{-12}$ в зависи-

мости от параметров уравнения M и e на сетке $M_i = 2\pi i / N$ и $e_j = j / N$ $(i,j=0,\ldots,N)$. Представить результаты графически как поверхность (или карту линий уровней) зависимости I=I(M,e).

2. Программно реализовать метод Гаусса для численного решения систем линейных уравнений $\mathbf{A}\mathbf{x} = \mathbf{b}$ произвольного порядка. Опробовать метод на примере системы уравнений четвертого порядка $\mathbf{A}\mathbf{x} = \mathbf{b}$, где

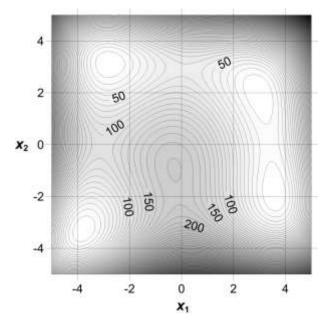
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \\ 4 & 3 & 2 & 1 \end{pmatrix} \quad \mathbf{H} \quad \mathbf{b} = \begin{pmatrix} 30 \\ 22 \\ 18 \\ 20 \end{pmatrix}.$$

Сравнить численное решение с точным. Оценить вычислительные ошибки численного решения.

3. Составить программу для полиномиальной интерполяции g(x) функции $f(x) = e^x$ по ее n узловым значениям на отрезке [-1,1]. Исследовать поведение ошибки $\Delta g(x) = g(x) - f(x)$ на отрезке интерполяции при n > 7 для равномерной сетки: $x_i = -1 + 2(i-1)/(n-1)$ (i=1,...,n), и неравномерной сетки Чебышева:

$$x_i = \cos\left(\frac{2i-1}{2n}\pi\right) \quad (i=1,\ldots,n).$$

Варианты полинома g(x): а) канонический; б) Лагранжа; в) Ньютона; г) Эйткена— Невилла.


4. Вычислить определенный интеграл

$$I = \int_{-1}^{1} e^x \, \mathrm{d} x,$$

используя квадратурные формулы а) Ньютона–Котеса с количеством узлов n=2,3,4; б) Гаусса с количеством узлов n=1,2,3; в) составные Симпсона с разбиениями N=1,2,3. Оценить ошибку численного решения, сравнивая его с точным значением интеграла.

5. Методами а) наискорейшего градиентного спуска; б) Ньютона; в) покоординатного спуска с точностью до $\|\Delta \mathbf{x}\| = 10^{-12}$ численно найти все минимумы функции Химмельблау

$$\Phi(x_1,x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2.$$

Рекомендации: шаг метода наискорейшего градиентного спуска выбирать по формуле

$$h = \frac{\Phi_{\mathbf{x}}' \cdot \Phi_{\mathbf{x}}'}{(\Phi_{\mathbf{y}\mathbf{x}}'' \Phi_{\mathbf{x}}') \cdot \Phi_{\mathbf{x}}'}.$$

6. Численно найти решение системы дифференциальных уравнений $\mathbf{x}' = \mathbf{f}(\mathbf{x})$: I) Лотки–Вольтерры; II) математического маятника; III) плоской задачи двух тел; методом а) Рунге–Кутты 4-го порядка; б) Хойна; в) неявным трапеций; г) явным средней точки; д) неявным средней точки; е) явным Адамса 2-го порядка; для значения независимой переменной t_0+10T , где T — период (цикл) решения задачи. Графически представить отклонение интегрального соотношения I от начального значения I_0 ($\Delta I = I - I_0$) на всем интервале интегрирования для различных величин постоянного шага $h = T/10^i$ (i = 1, 2, 3).

Задача І:

$$\begin{aligned} x_1' &= x_1(x_2 - 2), & x_1(t_0) &= 1; \\ x_2' &= x_2(1 - x_1), & x_2(t_0) &= 3; \\ I(x_1, x_2) &= \ln x_1 - x_1 + 2 \ln x_2 - x_2 = I_0 = \text{const}; \\ T &= 2\pi/\sqrt{2}. \end{aligned}$$

Задача II:

$$x'_1 = x_2,$$
 $x_1(t_0) = 1;$
 $x'_2 = -\sin x_1,$ $x_2(t_0) = 0;$
 $I(x_1, x_2) = x_2^2/2 - \cos x_1 = I_0 = \text{const};$
 $T = 2\pi.$

Задача III:

$$\begin{aligned} x_1' &= x_3, & x_2' &= x_4, & x_1(t_0) &= 1, & x_2(t_0) &= 0; \\ x_3' &= -x_1/r^3, & x_4' &= -x_2/r^3, & x_3(t_0) &= 0, & x_4(t_0) &= 1; \\ r &= \sqrt{x_1^2 + x_2^2}, & v &= \sqrt{x_3^2 + x_4^2}; \\ I(x_1, x_2) &= v^2/2 - 1/r &= I_0 &= \text{const}; \\ T &= 2\pi. \end{aligned}$$

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамены проводятся в устной форме. Студент допускается к экзамену, если он выполнил 6 практических заданий. Экзаменационный билет состоит из двух теоретических вопросов по темам лекций (см. п. 8) и одной задачи. Продолжительность экзамена 3 часа. На экзамене проверяются результаты освоения дисциплины по индикатору ИОПК-1.1. Результаты экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Успешно выполненные практические задания являются результатом освоения дисциплины по индикатору ИОПК-1.2. и ИПК 1.2.

Оцениваются ответы на два основных теоретических вопроса и ответы на дополнительные к ним вопросы, а также задача. Баллы за ответ на вопрос: 5 — правильный; 4 — неполный; 3 — фрагментарный; 2 — отсутствует. Баллы за решение задачи: 5 — решена правильно; 4 — с арифметической ошибкой; 3 — с методической ошибкой (неправильно использован метод); 2 — задача не решена.

Оценка «отлично» выставляется, если общий балл — 24–25. Оценка «хорошо» выставляется, если общий балл — 20–23, причем среди оценок вопросов и задачи допускается одна оценка 3 при отсутствии оценок 2. Оценка «удовлетворительно» выставляется, если общий балл — 15–19, причем среди оценок вопросов и задачи допускается одна оценка 2. Оценка «неудовлетворительно» выставляется, если среди оценок вопросов и задачи две оценки 2 и более.

Примеры билетов (ИОПК-1.1.) Билет № 1

- 1. Методы дихотомии и хорд для решения нелинейных уравнений
- 2. Методы Рунге-Кутты
- 3. Задача на тему «Интерполяция»

Билет № 2

- 1. Методы Ньютона и секущих для решения нелинейных уравнений
- 2. Метод разложения в ряд Тейлора для решения ОДУ
- 3. Задача на тему «Численное дифференцирование»

Билет № 3

- 1. Метод простых итераций для решения скалярных нелинейных уравнений
- 2. Составные квадратурные формулы
- 3. Задача на тему «Численное интегрирование»

Билет № 4

- 1. Вычисление определителей и обратных матриц методом Гаусса
- 2. Квадратурные формулы Гаусса
- 3. Задача на тему «Интерполяция»

Билет № 5

- 1. Метод простых итераций для решения систем линейных уравнений. Метод Зейделя
- 2. Квадратурные формулы Ньютона– Котеса
- 3. Задача на тему «Решение нелинейных уравнений»

Билет № 6

- 1. Интерполяция Лагранжа
- 2. Численное интегрирование. Метод неопределенных коэффициентов
- 3. Задача на тему «Интерполяция»

Билет № 7

- 1. Интерполяция Ньютона
- 2. Численное дифференцирование. Метод неопределенных коэффициентов
- 3. Задача на тему «Метод Гаусса для решения СЛАУ»

Билет № 8

- 1. Интерполяция Эйткена-Невилла
- 2. Метод наименьших квадратов. Линейная аппроксимация
- 3. Задача на тему «Интерполяция»

Билет № 9

1. Проблема сходимости полиномиаль-

- ной интерполяции. Интерполяция на разбиении Чебышева
- 2. Методы Рунге-Кутты
- 3. Задача на тему «Численное интегрирование»

Билет № 10

- 1. Представление чисел в компьютерной арифметике
- 2. Численное дифференцирование. Метод неопределенных коэффициентов
- 3. Задача на тему «МНК»

Примеры задач к экзамену (ИОПК-1.2., ИПК 1.2.)

Задача на тему «Интерполяция»

На сетке x_1, x_2, x_3 при известных значениях функции f_1, f_2, f_3 (узловые значения задаются экзаменатором) построить интерполяционный многочлен второй степени: а) методом неопределенных коэффициентов; б) Лагранжа; в) Ньютона; г) Эйткена—Невилла.

Задача на тему «Численное дифференцирование»

Составить приближенную формулу для первой (второй) производной от некоторой функции, если на сетке x_1, x_2, x_3 известны ее значения f_1, f_2, f_3 (узловые значения задаются экзаменатором): а) методом неопределенных коэффициентов; б) используя интерполяционную формулу Лагранжа.

Задача на тему «Численное интегрирование»

1. Используя а) составную формулу трапеций при разбиении N=4; б) формулу Симпсона; в) квадратурную формулу Гаусса с двумя узловыми значениями; г) формулу Ньютона–Котеса с четырьмя узловыми значениями; вычислить интеграл

$$I = \int_{0}^{1} x^{n} \, \mathrm{d}x$$

для заданной степени n, и оценить ошибку численного решения.

2. Методом неопределенных коэффициентов определить вес c и узловые значения x_1 и x_2 квадратурной формулы

$$S(f) = c[f(x_1) + f(x_2)]$$

для интеграла общего вида

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Задача на тему «Решение нелинейных уравнений»

- 1. Используя метод Ньютона, составить приближенную (итерационную) формулу для вычисления корня степени n от числа a: $x = \sqrt[n]{a}$. Причем нельзя использовать операцию извлечения корня. Вычислить $\sqrt[2]{2}$, применив две итерации, при начальном приближении $x_0 = 1$, и оценить ошибку.
- 2. Определить значение начального приближения x_0 , при котором схема Ньютона зацикливается для уравнений: a) $\sin x = 0$; б) $x^3 x = 0$.

Задача на тему «Метод Гаусса для решения СЛАУ»

Решить систему уравнений методом Гаусса (либо вычислить определитель матрицы системы)

a)
$$\begin{pmatrix} 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix}; 6) \begin{pmatrix} 2 & 4 & 5 \\ 1 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 25 \\ 11 \\ 6 \end{pmatrix};$$

B) $\begin{pmatrix} 4 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}; \Gamma) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 1 & 3 & 7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}.$

Задача на тему «МНК»

На сетке x_1, x_2, x_3 при известных значениях функции f_1, f_2, f_3 (узловые значения задаются экзаменатором) методом наименьших квадратов построить аппроксимацию линейной функцией и вычислить среднеквадратическую ошибку.

Задача на тему «Вычисление собственных значений»

Вычислить собственные числа 1) методом вращений Якоби матриц:

a)
$$\begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix}$$
; 6) $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$;

2) выполнив три итерации, оценить наибольшее собственное число степенным методом матрицы

$$\mathbf{A} = \begin{pmatrix} i & j \\ j & i \end{pmatrix}$$

(целые числа i и j задаются экзаменатором) с начальным приближением собственного вектора $\mathbf{x}_0 = (1,0)^T$. Рекомендация: в степенном методе пользоваться итерационной формулой без нормирования, а нормировку выполнить на последней итерации.

Задача на тему «Методы оптимизации»

1. Составить алгоритм метода покоординатного спуска применительно к функции

$$f(x, y) = x^2 - xy + 4y^2$$

и найти ее минимум.

2. Составить итерационную схему Ньютона для минимизации функции

$$f(x,y) = x^4 + 4y^4.$$

Оценить, сколько необходимо выполнить итераций для достижения минимума x=0, y=0 с точностью до $\varepsilon=10^{-8}$ при начальных приближениях $x_0=1, y_0=1$.

Задача на тему «Решение ОДУ»

Записать схему интегрирования а) путем разложения в ряд Тейлора до 4-го порядка и б) методом Хойна на первом шаге для уравнения

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x$$

с начальным условием $x_0 = x(0)$.

К промежуточной аттестации студент должен владеть терминологией дисциплины (см. электронную версию лекций, а также электронные образовательные ресурсы к дисциплине).

Примерный перечень терминов

Модель математическая; Матрица Якоби;

Модель численная; Метод Ньютона модифицированный;

Погрешность числа; Метод простых итераций; Погрешность числа абсолютная; Сжимающее отображение;

Погрешность числа относительная; Порядок метода; Число с плавающей точкой; Метод Зейделя;

Основание системы счисления; Система линейных уравнений;

Порядок числа; Метод Гаусса; Мантисса; Норма матрицы;

 Число с фиксированной точкой;
 Число обусловленности;

 Цифра числа значащая;
 Плохая обусловленность;

 Цифра числа верная;
 Симметризация Гаусса;

 Машинный эпсилон;
 Собственная пара;

 Метод дихотомии;
 Формула Рэлея;

Метод дихотомии; Формула Рэлея; Метод хорд; Метод степенной;

Метод Ньютона; Матрица вращения Якоби; Метод касательных; Метод секущих; Метод секущих; Целевая функция;

Метод секущих; Целевая функц Метод простых итераций; Метод спуска;

Система нелинейных уравнений; Метод градиентного спуска.

11. Учебно-метолическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=21845
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
- в) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
 - 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. Лаборатория знаний. 2015.
 - 2. Вержбицкий В.М. Основы численных методов: Учебник для вузов. Высшая школа. 2002.
- б) дополнительная литература:
 - 1. Dahlquist G., Bjoerck A. Numerical Methods. Courier Corporation. 2003.
 - 2. Khoury R., Harder D. Numerical Methods and Modelling for Engineering. Springer International Publishing Switzerland. 2016.
 - 3. Авдюшев В.А. Численное моделирование орбит небесных тел. Издательский Дом Томского государственного университета. 2015.
 - 4. Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях. Высшая школа. 2000.
- в) ресурсы сети Интернет:
 - http://astro.tsu.ru/OsChMet/
 - Материально-информационная база Научной библиотеки ТГУ

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
 - Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS
 Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office
 Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (GoogleDocs, Яндекс диск и т.п.).
- б) информационные справочные системы:
 - Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
 - Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформаЮрайт https://urait.ru/
 - 36C ZNANIUM.com https://znanium.com/
 - 3ECIPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

- Аудитории для проведения занятий лекционного типа.
- Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.
- Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Авдюшев Виктор Анатольевич, д.ф.-м.н., Томский госуниверситет, профессор