Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Атомно-абсорбционная спектроскопия

по направлению подготовки

03.03.02 Физика

Направленность (профиль) подготовки : **Фундаментальная физика**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные.

ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК 2.2 Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные выводы по результатам исследования

ИПК 1.1 Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования

2. Задачи освоения дисциплины

- Обучить студентов физическим основам современных спектральных приборов, источников и приемников оптического излучения;
 - Научить студентов использоваться современными спектральными приборами;
- Научить студентов применять полученные знания для решения различных задач практической спектроскопии.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, входит в модуль по выбору «Оптика и спектроскопия»

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Шестой семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по дисциплинам «Общая физика», «Техника спектроскопии»

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых: -лабораторные: 64 ч.

в том числе практическая подготовка: 64 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Изучение призменного спектрометра

В лабораторной работе изучается устройство призменного спектрометра, проводится регистрация пробы, выполняется отождествление спектральных линий и проводится расчет дисперсии прибора во доступном диапазоне длин волн.

Тема 2. Качественный спектральный анализ

В лабораторной работе проводится регистрация неизвестной металлической пробы с дальнейшим проведением качественного анализа, который подразумевает определение находящихся в пробе химических элементов.

Тема 3. Изучение дифракционного спектрометра

В лабораторной работе изучается устройство призменного спектрометра, проводится регистрация пробы, выполняется отождествление спектральных линий и проводится расчет дисперсии прибора во доступном диапазоне длин волн.

Тема 4. Полу-количественный анализ

В лабораторной работе проводится регистрация неизвестной металлической пробы с дальнейшим проведением полу-количественного анализа, который подразумевает определение приблизительной концентрации находящихся в пробе химических элементов.

Тема 5. Количественный спектральный анализ

В лабораторной работе производится построение методики анализа стальных сплавов по принципу трех эталонов. После построения проводиться корректировка методики и точный количественный анализ неизвестной пробы.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости и оценки практических заданий. Фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Для получения оценки «зачтено» необходимо выполнить все лабораторные работы и сдать отчеты по ним.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте $T\Gamma Y$ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=27009
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. К.И.Тарасов. Спектральные приборы. Л.: Машиностроение. 19 68.
- 2. А.Н.Зайдель, Г.В.Островская, Ю.И.Островский. Техника и практика спектроскопии.- М: Наука.-1976.
 - 3. И.В.Пейсахсон. Оптика спектральных приборов. Л.: Машиностроение. 1970.
- 4. И.М.Нагибина, В.К.Прокофьев. Спектральные приборы и техника спектроскопии. Л.:

Машиностроение.- 1967.

- 5. Малышев В.И. Введение в экспериментальную спектроскопию. М.: Наука, 1979. 471 с.
 - 6. В.В.Лебедева. Техника оптической спектроскопии.- М: Изд-во МГУ.-1977.
 - 7. И.В.Скоков. Спектральные приборы. М: Машиностроение. 1979.

- 8. Бокова Н.А., Елисеев А.А., Попова Т.Н. Техника спектроскопии. Томск: Изд-во ТГУ- 1994. 74 с.
 - 9. Лабораторный практикум. Новосибирск: Изд-во НГУ. 1999. 123 с.
 - б) дополнительная литература:
 - 1. А.А.Шишловский. Прикладная физическая оптика.- М: ГИФИЛ.- 1961.
- 2. Демтредер В. Лазерная спектроскопия. Основные принципы и техника эксперимента. М.: Наука., 1985. 607 с.
- 3. Поплавский Ю.А., Синица Л.Н., Матульян Ю.А., Щербаков А.П. Фотоэлектрическая регистрирующая система на основе ПЗС-линейки.// Наука производству. 2003. №9. С.28-29.
- 4. Нагибина И.М., Прокофьев В.К. Спектральные приборы и техника спектроскопии. Л.:»Машиностроение» - 1967
 - 5. Лебедева В.В. Экспериментальная оптика. М.: Изд-во МГУ, 1994. 364 с.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
- публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
- б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index

– ...

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Лаборатории, оборудованные приборами: спектрограф ИСП-28, Спектрограф ИСП-51 с камерой УФ-90, генераторы дуги и искры, спектропроектор, стилоскоп СЛ-13.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Савельев Егор Сергеевич, Кафедра оптики и спектроскопии, ассистент