Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Научно-образовательный центр Передовая инженерная школа «Агробиотек»

Оценочные материалы по дисциплине

Нетрадиционные источники энергии в агропромышленном комплексе

по направлению подготовки

35.03.06 Агроинженерия

Направленность (профиль) подготовки: Технические системы в агробизнесе

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

ПК-3 Способен организовать работу по повышению эффективности технического обслуживания и эксплуатации сельскохозяйственной техники и иной техники, используемой в сельскохозяйственном производстве (далее – техники).

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 3.1 Демонстрирует знания технологии производства сельскохозяйственной продукции и передового опыта в области эксплуатации сельскохозяйственной техники
- ИПК 3.2 Проводит анализ эффективности эксплуатации сельскохозяйственной техники, разрабатывает способы повышения эффективности эксплуатации сельскохозяйственной техники с учетом предложений персонала, осуществляет анализ рисков от их реализации
- ИПК 3.3 Вносит коррективы в планы работы подразделения для внедрения предложений по повышению эффективности эксплуатации сельскохозяйственной техники, согласованных с руководством организации

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- индивидуальное творческое задание;
- контрольная работа.

Индивидуальное творческое задание (ИПК 3.1, ИПК 3.2, ИПК 3.3)

Индивидуальное творческое задание заключается в подготовке презентации для выступления на лекции.

Раздел 2. Использование солнечной энергии

- 1. Солнечная энергия. Первые опыты использования солнечной энергии. Страны лидеры по использованию солнечной энергии на сегодняшний день.
 - 2. История создания гелиоустановок, типы гелиоустановок их применение.
 - 3. Вилы солнечных систем для преобразования солнечной энергии в другие вилы.
 - 4. Применение оборудования для преобразования солнечной энергии в быту.
- 5. Применение фотоэлектрических систем в сельском хозяйстве, возможные секторы применения.
 - 6. «Гиганты» преобразования солнечной энергии.
 - 7. Использование солнечной энергии в РФ.
 - 8. Двигатели, работающие на солнечной энергии.
 - 9. Средства передвижения, работающие на солнечной энергии.
 - 10. Потенциал использования солнечной энергии.

Раздел 3. Ветроэнергетика

- 1. «Энергия ветра», область применения.
- 2. Виды оборудования для преобразования энергии ветра
- 3. Типы ветроколес, устройство, принцип работы, применение.
- 4. Ветроэнергетическая установка, устройство, принцип работы, применение.
- 5. Ветро-механическая установка, устройство, принцип работы, применение.
- 6. Страны лидеры по использованию энергии ветра на сегодняшний день.
- 7. Возможность применения ветро-механических установок в сельском хозяйстве.
- 8. Первые опыты использования энергии ветра
- 9. «Гиганты» преобразования солнечной энергии.
- 10. Использование солнечной энергии в РФ.

Раздел 4. Гидроэнергетика

- 1. «Энергия океана», область применения.
- 2. Виды оборудования для преобразования энергии океана
- 3. Энергия солей океана
- 4. Гидроэлектростанции мира и РФ.
- 5. Страны лидеры по использованию энергии океана на сегодняшний день.
- 6. Возможность применения гидротурбин в сельском хозяйстве.
- 7. Первые опыты использования энергии океана
- 8. «Гиганты» преобразования энергии океана (воды).
- 9. Использование энергии воды в РФ.

Раздел 5. Вторичная энергия

- 1. «Геотермальная энергия», область применения.
- 2. Виды оборудования для преобразования энергии недр земли.
- 3. Использование геотермальных источников в быту.
- 4. Тепловые электростанции, устройство и принцип работы
- 5. Грунтовые теплообменники, устройство и принцип работы.
- 6. Страны лидеры по использованию геотермальной энергии на сегодняшний день.
- 7. Воздействие на окружающую среду геотермальной энергетики.
- 8. Первые опыты использования геотермальной энергетики.
- 9. «Гиганты» преобразования геотермальной энергии.
- 10. Использование геотермальной энергии в РФ.

Раздел 6. Другие виды возобновляющейся энергии воды

- 1. Химические источники энергии.
- 2. Энергия приливов и отливов.
- 3. Аккумулирующая способность энергии.
- 4. Устройство и применение топливных элементов электрической энергии.

Раздел 7. Энергетический анализ использования возобновляющейся энергии

- 1. Ресурсы и потенциал возобновляемых источников энергии в мире и РФ.
- 2. Российский энергетический рынок.
- 3. Потенциальные рынки технологий возобновляемых источников энергии.
- 4. Возобновляемые источники энергии сегодня.
- 5. Содействие рынкам оборудования возобновляемых источников энергии.
- 6. Возобновляемая энергетика в России: экономический, социальный и экологический аспекты.
 - 7. Конвенция ООН по изменению климата
- 8. Примеры использования солнечной энергии для удовлетворения потребностей жителей в регионах РФ.
- 9. Примеры использования ветровой энергии для удовлетворения потребностей жителей в регионах РФ.
- 10. Примеры использования геотермальной энергии для удовлетворения потребностей жителей в регионах РФ.

Критерий оценивания:

Оценка «отлично» выставляется студенту, у которого презентация состоит из 13 – 15 слайдов. Грамотно составлен доклад. Студент уверено отвечает на вопросы преподавателя.

Оценка «хорошо» выставляется студенту, у которого презентация состоит из 10-12 слайдов. Грамотно составлен доклад. Студент не уверено отвечает на вопросы преподавателя.

Оценка «удовлетворительно» выставляется студенту, у которого презентация состоит из 7-9 слайдов. Есть недочеты в докладе. Студент с затруднениями отвечает на вопросы преподавателя.

Оценка «неудовлетворительно» выставляется студенту, у которого презентация имеет менее 7 слайдов. Плохо составлен доклад. Студент не может ответить на вопросы преподавателя.

Контрольная работа (ИПК 3.1, ИПК 3.2, ИПК 3.3)

Задача 1. Определить мощность малой ГЭС, если расход воды Q, напор H. Коэффициент потерь напора в открытом гидроканале K = 0.85, КПД гидротурбины η т, КПД гидрогенератора η э. Как изменится мощность, если затвором уменьшить расход воды до 70% от номинального? Будет она больше или меньше, чем 70% от номинальной мощности?

Таблица 1. Исходные данные к задаче № 1.									
вариант	Q, м3/с	Н, м	ηт, %	ηэ, %	вариант	Q, m3/c	Н, м	ηт, %	ηэ, %
1	10	17	76	94	16	21	16	73	90
2	12	15	78	95	17	23	18	72	94
3	14	13	79	96	18	25	20	71	95
4	16	11	80	97	19	27	22	70	96
5	18	9	81	93	20	29	24	80	97
6	20	7	82	92	21	30	27	81	93
7	22	19	83	91	22	32	29	82	92
8	24	21	84	90	23	34	31	83	91
9	26	23	85	94	24	36	33	84	90
10	28	25	86	95	25	38	35	85	94
11	11	6	87	96	26	31	30	86	95
12	13	8	88	97	27	33	32	87	96
13	15	10	89	93	28	35	34	88	97
14	17	12	75	92	29	37	36	89	93
15	19	14	74	91	30	39	38	90	92

Задача 2. Определить мощность ветровой электростанции, содержащей п однотипных ветроэнергетических установок. Длина лопасти ветроколеса L, скорость ветра w, КПД ветродвигателя пв, электрический КПД установки (генератора и преобразователя) пэ, температура воздуха t, атмосферное давление p.

Таблица 2. Исходные данные для задачи № 2.

Вариант	п, шт.	L, м	w, m/c	η в, %	ηэ, %	t, C	р, кПа
1	5	55	5	31	61	-29	121
2	6	57	7	33	63	-27	119
3	7	59	9	35	65	-25	117
4	8	61	11	37	67	-23	115
5	9	63	13	39	69	-21	113
6	10	65	15	41	71	-19	111
7	11	67	17	43	73	-17	109
8	12	69	19	45	75	-15	107
9	13	71	21	47	79	-13	105
10	14	73	23	49	81	-11	103
11	15	75	25	51	83	-9	101
12	16	77	27	53	85	-7	99
13	17	79	29	55	87	-5	97
14	18	53	31	57	89	-3	95
15	19	51	33	59	59	-1	93

16	20	52	6	32	60	0	94
17	5	54	8	34	62	2	96
18	6	56	10	36	64	4	98
19	7	58	12	38	66	6	100
20	8	60	14	40	68	8	102

Критерии оценивания:

Оценка «отлично» выставляется при правильно выполненной задаче, аккуратно и чисто, в соответствии с требованиями, оформленном решении.

Оценка «хорошо» выставляется при правильно решенной задаче и при наличии в ходе выполнения незначительных помарок.

Оценка «удовлетворительно» выставляется, если после проверки в задаче будут исправлены все ошибки и она будет оформлена в соответствии с пунктом выше.

Оценка «неудовлетворительно» выставляется, если задание не выполнено.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Экзаменационный билет состоит из двух вопросов (ИПК 3.1, ИПК 3.2, ИПК 3.3).

Перечень теоретических вопросов к зачету:

- 1. Потенциальные возможности использования нетрадиционных возобновляемых источников энергии.
 - 2. Научные принципы использования возобновляемых источников энергии.
 - 3. Технические проблемы использования возобновляемых источников энергии.
- 4. Социально-экономические последствия развития энергетики на возобновляемых источниках энергии.
 - 5. Задачи и приоритеты Энергетической стратегии России.
 - 6. Современная энергетическая система России.
 - 7. Основные объекты нетрадиционной энергетики России.
 - 8. Особенности использования НВИЭ в энергетическом секторе.
 - 9. Механизмы реализации программы внедрения НВИЭ.
 - 10. Состояние разработок НВИЭ в России.
 - 11. Состояние производства и проблемы использования НВИЭ в России.
 - 12. Происхождение солнечной энергии.
 - 13. История развития использования солнечной энергии человечеством.
 - 14. Солнечное излучение.
 - 15. Определение интенсивности солнечного излучения.
 - 16. Преобразование солнечной энергии в электричество.
 - 17. Башенные и модульные электростанции.
 - 18. Солнечные батареи.
 - 19. Преобразование солнечной энергии в тепловую энергию.
 - 20. Новые конструкции солнечных коллекторов.
 - 21. Эксплуатационная надежность солнечных коллекторов.
 - 22. Основные элементы и принципиальные схемы систем гелиотеплоснабжения.
- 23. Теплопроизводительность и коэффициент полезного действия солнечной установки.
 - 24. Опыт использования солнечной установки.
 - 25. Методика расчета солнечных систем теплоснабжения.
 - 26. Энергетические показатели системы гелиотеплоснабжения.
 - 27. Экономические показатели системы гелиотеплоснабжения.
 - 28. Пример расчета гелиоустановки.
 - 29. Использование солнечной энергии для нагрева воды.
 - 30. Характеристики радиационного режима

- 31. Солнечные водонагревательные установки.
- 32. Степень черноты и поглощательная способность материалов.
- 33. Режимы работы плоского солнечного коллектора
- 34. Методика испытания коллектора
- 35. Расчет производительности гелиоустановок для горячего водоснабжения.
- 36. Потенциальные возможности использования солнечной энергии в теплоснабжении молочных ферм.
 - 37. Использование солнечной энергии при заготовке сена
- 38. Характеристика радиационного режима солнца как источника энергии для сушки сена
 - 39. Классификация и конструкции гелиоколлекторов-сушилок.
 - 40. Ветер как источник энергии.
 - 41. Ветроэнергетический кадастр.
 - 42. Основы теории использования энергии ветра
 - 43. Мощность, развиваемая ветроколесом.
 - 44. Коэффициент использования энергии ветра
 - 45. Аэродинамические характеристики ветроагрегатов.
 - 46. Принцип работы ветроколеса
 - 47. Основные виды и элементы ветроэнергетических установок.
 - 48. Классификация ветроустановок.
 - 49. Конструкции ветроустановок.
 - 50. Общие принципы аккумулирования энергии, производимой ветроустановками.
 - 51. Механические аккумуляторы ветроагрегатов.
 - 52. Методы гидравлического аккумулирования энергии.
 - 53. Схемы пневматического аккумулирования энергии.
 - 54. Тепловые аккумуляторы.
 - 55. Водородное аккумулирование.
 - 56. Применение электрохимических аккумуляторов в ветроустановках.
- 57. Методы резервирования ветроэнергетических агрегатов и ВЭС и системы дублирования их мощности.
 - 58. Выбор и схемы использования резервной установки.
 - 59. Методы дублирования мощности ветроэнергетических установок.
- 60. Использование ВЭС в энергосистемах и параллельная работа ВЭУ с неветровыми энергоустановками.
 - 61. Режимы работы и мощность ветроэлектрической установки.
 - 62. Опыт использования ветроэнергетических установок.
 - 63. Производство механической работы.
 - 64. Производство электроэнергии.
- 65. Оценка экономической эффективности использования энергии ветра для электро- и теплоснабжения потребителей Севера
- 66. Методика выбора ветроэнергетических установок для энергоснабжения сельскохозяйственных потребителей.
 - 67. Энергетические и экономические показатели использования ветроустановок.
 - 68. Морская ветроэнергетика
 - 69. Техника безопасности при монтаже и эксплуатации энергоустановок на ВИЭ.
 - 70. Опасности, связанные с монтажом и эксплуатацией энергоустановок на ВИЭ.
 - 71. Монтаж и эксплуатация энергоустановок.
 - 72. Основные этапы и направления развития малой гидроэнергетики.
 - 73. Исходные гидрологические данные для гидроэнергетических расчетов.
 - 74. Потенциал малой гидроэнергетики.
 - 75. Гидроэнергетический потенциал малых рек.
 - 76. Гидроэнергетические ресурсы водохранилищ неэнергетического назначения.

- 77. Проектирование малых ГЭС.
- 78. Основные схемы использования водной энергии.
- 79. Пример схемы малой ГЭС для использования на сельскохозяйственных предприятиях.
 - 80. Определение основных параметров малых ГЭС.
 - 81. Гидросиловое оборудование малых ГЭС.
 - 82. Микро ГЭС.
 - 83. Экономическая эффективность малых ГЭС.
 - 84. Пример расчета
 - 85. Общие положения использование энергии биомассы.
 - 86. Биомасса, основные понятия и определения.
 - 87. Производство биомассы для энергетических целей.
 - 88. Процессы утилизации биомассы.
 - 89. Методы получения биогаза. Исходный материал для получения биогаза
 - 90. Классификация и конструкция биогазовых установок.
 - 91. Критерии оценки эффективности получения биогаза
 - 92. Использование тепла Земли.
 - 93. Геотермальные ресурсы и их типы.
 - 94. Использование геотермальной энергии.
 - 95. Использование низкопотенциального тепла Земли.
 - 96. Использование энергии океана и оценка его ресурсов.
 - 97. Экономическая характеристика океанических электростанций.
 - 98. Критерии эколого-экономической эффективности энергетических технологий.
- 99. Технико-экономическое обоснование выбора варианта электроснабжения сельского района
- 100. Комплексная электрификация сельскохозяйственных потребителей на основе НВИЭ

Критерии оценивания:

Результаты зачета определяются оценками «зачтено», «не зачтено».

Оценка «зачтено» выставляется студенту, который твердо усвоил программный материал, грамотно и по существу, без существенных неточностей отвечает на вопросы, владеет необходимыми навыками и приемами выполнения практических заданий.

Оценка «не зачтено» выставляется студенту, который не знает значительной части программного материала, допускает принципиальные ошибки, неуверенно, с большими затруднениями выполняет практические задания.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тест (ИПК 3.1, ИПК 3.2, ИПК 3.3)

1. Выбрать правильный ответ

Какие источники энергии являются традиционными

- a. AЭC, ΓЭC, РЭC.
- б. ТЭС, ГЭС. АЗС.
- в. АЭС, ГЭС, ТЭС.
- г. ГЭС, ТЭС, КПСС.

Ответ: в

2. Выбрать правильный ответ

Какие из представленных источников энергии относятся к возобновляемым:

- а. газ, нефть.
- б. масленичные растения, газ.
- в. геотермальная энергия, энергия солнца

- г. масленичные растения, энергия биомассы. Ответ: г
- 3. Выбрать правильный ответ

Какие из представленных источников энергии относятся к не возобновляемым:

- а. газ, нефть.
- б. масленичные растения, газ.
- в. геотермальная энергия, энергия биомассы. г. нефть, энергия биомассы.

Ответ: а

4. Выбрать правильный ответ

Какой источник энергии потенциально несет наибольшую экологическую опасность:

- а. солнце.
- б. ТЭС.
- в. АЭС.
- г. АЭС, солнце.
- д. все перечисленные.

Ответ: г

5. Выбрать правильный ответ

Из чего состоит солнечный коллектор для теплоснабжения?

- а. полупроводниковые фотодиоды.
- б. трубы гелиевыми элементами.
- в. полупроводниковые светодиоды.
- г. все перечисленное.

Ответ: б

6. Выбрать правильный ответ

Могут ли работать солнечные гелио-коллекторы в зимнее время?

- а. да
- б. нет.
- в. только утром, когда солнечные лучи максимально доходят до поверхности.
- г. только в полнолуние Ответ: а
- 7. Выбрать правильный ответ

Какие дополнительные работы нужно проводить в зимний период, чтобы гелиевая установка работала?

- а. очистка коллектора от снега
- б. очистка коллектора от инея.
- в. адаптация автоматики установки.
- г. всё перечисленное.

Ответ: г

8. Выбрать правильный ответ

Какова производительность гелиоустановки в зимний период?

- а. менее 30%.
- б. 30%.
- в. более 30%.
- г. производительность отсутствует.

Ответ: в

Критерии оценивания:

Оценка «отлично» выставляется студенту, если процент правильных ответов составляет 80-100 %.

Оценка «хорошо» – от 70 - 79 % правильных ответов.

Оценка «удовлетворительно» – от 60 - 69 % правильных ответов.

Оценка «неудовлетворительно» выставляется студенту, если студент правильно отвечает менее чем на $60\,\%$ вопросов.

Информация о разработчиках

Борисенко Алексей Леонидович, кандидат биологических наук, доцент кафедры ботаники БИ НИ ТГУ.