Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Механико-математический факультет

УТВЕРЖДЕНО: Декан Л. В.Гензе

Оценочные материалы по дисциплине

Математическое моделирование

по направлениям подготовки / специальности 01.03.01 Математика 02.03.01 Математика и компьютерные науки

Направленность (профиль) подготовки/ специализация: Современная математика и математическое моделирование Вычислительная математика и компьютерное моделирование

Форма обучения **Очная**

Квалификация

Математик. Преподаватель / Математик. Аналитик / Математик. Исследователь Математик. Преподаватель / Математик. Вычислитель / Исследователь в области математики и компьютерных наук

Год приема **2024**, **2025**

СОГЛАСОВАНО: Руководитель ОП Л.В. Гензе

Председатель УМК Е.А. Тарасов

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-2 Способен разрабатывать, анализировать и внедрять математические модели в современной науке и технике, экономике и управлении.
- ОПК-3 Способен разрабатывать и реализовывать алгоритмы и компьютерные программы, пригодные для практического применения.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК-2.1 Умеет обоснованно выбрать тип математической модели для формализации решаемой задачи
- РООПК-2.2 Применяет стандартные и типовые действия при построении математической модели определенного типа
- РООПК-2.3 Применяет подходы визуализации и представления результатов математического моделирования для апробации и демонстрации в виде отчетов, презентаций и научных текстов
- РООПК-3.1 Владеет теоретическими основами программирования и алгоритмизации
- РООПК-3.2 Способен реализовывать алгоритмы на языках программирования высокого уровня

РООПК-3.3 Способен разрабатывать программные алгоритмы при решении задач методами математики и механики

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- коллоквиум;
- индивидуальное задание;

Контрольная работа №1 и №2 (РООПК-2.1, РООПК-2.2, РООПК-3.1).

Контрольная работа №1 состоит из 6 вопросов. Контрольная работа проходит в аудитории письменно.

Пример варианта контрольной работы № 1.

ВАРИАНТ 2

- 1. Модель Лотки Вольтерра для экономических конкурентных процессов (можно словами описать).
- 2. Какие модели называются изоморфными и какие гомоморфными?
- 3. Какая математическая модель называется статической?
- 4. Привести возможные модели персика.
- 5. Какая математическая модель называется детерминированной?
- 6. Параметрическая идентификация моделей. Критерии близости.

Контрольная работа $\mathbb{N}2$ состоит из 3 вопросов. Контрольная работа проходит в аудитории письменно.

Пример варианта контрольной работы № 2.

ВАРИАНТ 3

- 1. Методы увеличения и уменьшения цифровых изображений.
- 2. Основы пространственной фильтрации. Свертка и корреляция.
- 3. Основы фильтрации изображений. Усредняющие фильтры.

Вопросы для подготовки к коллоквиуму №1

- 1. Дать определение модели.
- 2. Перечислите основные свойства модели.
- 3. На какие классы можно разбить модели по типу решаемых задач?
- 4. Классификация моделей по уровням общности.
- 5. Классификация моделей по формам представления и обработки информации.
- 6. Привести возможные модели персика.
- 7. Какие модели называются изоморфными и какие гомоморфными?
- 8. Какая математическая модель называется статической?
- 9. Какая математическая модель называется детерминированной?
- 10. Какие модели называются аналитическими и какие имитационными?
- 11. Дать определение прагматических и познавательных моделей.
- 12. Какие этапы модельного исследования можно выделить?
- 13. Дать определение задачи идентификации.
- 14. Постановка задачи идентификации.
- 15. Структурная и параметрическая идентификация модели. Линейные модели.
- 16. Параметрическая идентификация моделей. Критерии близости.
- 17. Какой численный метод применяется при параметрической идентификации?
- 18. Что описывает модель диахронического скачка?
- 19. Какая тригонометрическая функция используется в модели диахронического скачка?
- 20. Какими характеристиками определяется страховой процесс?
- 21. Простейшая модель страхового процесса. Описание объекта моделирования.
- 22. Простейшая модель страхового процесса. Модель данных. Модель Эрланга.
- 23. Математическая модель совместного существования двух биологических видов (популяций) типа "хищник жертва" (модель Вольтерра Лотки).
- 24. Модель Лотки Вольтерра для экономических конкурентных процессов (можно словами описать).
- 25. В чем заключается модель Мальтуса?
- 26. Математическая модель взаимодействия загрязнения с окружающей средой (можно словами описать).
- 27. Какие задачи решаются при компьютерной обработке изображений?
- 28. Как записывается простая модель формирования изображения?
- 29. Что такое дискретизация в компьютерной обработке изображения?
- 30. Что такое квантование в компьютерной обработке изображения?

Вопросы для подготовки к коллоквиуму №2

- 1. Как определяется пространственное разрешение?
- 2. Что такое яркостное разрешение?
- 3. Методы увеличения и уменьшения цифровых изображений.
- 4. Смежность, связность, области и границы.
- 5. Четверки и восьмерка соседей пикселя цифрового изображения.
- 6. Дискретный путь.
- 7. Меры расстояния между пикселями.
- 8. Гистограмма цифрового изображения.
- 9. Процедура эквализации гистограммы цифрового изображения и метод приведения гистограмм.
- 10. Локальные методы улучшения изображений.
- 11. Использование гистограммных статистик для улучшения изображения.
- 12. Основы пространственной фильтрации. Свертка и корреляция.
- 13. Линейные сглаживающие фильтры.
- 14. Медианный фильтр.

- 15. Фильтры, основанные на порядковых статистиках.
- 16. Аддитивный шум. Импульсный шум. Мультипликативный шум.
- 17. Модель процесса искажения/восстановления изображения.
- 18. Гауссов шум. Шум Рэлея.
- 19. Шум Эрланга (гамма-шум). Экспоненциальный шум.
- 20. Равномерный шум. Импульсный шум.
- 21. Основы фильтрации изображений. Усредняющие фильтры.
- 22. Основы фильтрации изображений. Фильтры, основанные на порядковых статистиках.
- 23. Пространственные фильтры повышения резкости. Производные функции яркости цифрового изображения.
- 24. Повышение резкости изображений с использованием вторых производных: лапласиан.
- 25. Частотные методы обработки изображения.
- 26. Преобразование Фурье дискретного сигнала: двумерное и одномерное.
- 27. Низкочастотные фильтры.
- 28. Высокочастотные фильтры.

Индивидуальные задания №1-4.

Индивидуальные задания реализуются в течении семестра и оцениваются как «зачтено» или «не зачтено».

Индивидуальное задание №1. Решить задачу параметрической идентификации.

Индивидуальное задание №2. Прогнозирование работы страховой компании за определенный период времени и оценивание параметров (начального капитала и страховой премии).

Индивидуальное задание №3. Используя модель Вольтерра – Лотки, проследить динамику изменения карасей и щук на протяжении 7 лет.

Начальные значения численности карасей x(0)=3;

Начальные значения численности карасей y(0)=1;

$$a1 = 4$$
; $b1 = 2.5$; $a2 = 2$; $b2 = 1$;

Для разрешения модели использовать явный метод с числом шагов дискретизации $N=140\ N=280.$

Выбрать временной период между двумя соседними максимумами численности щук и приблизить зависимость численности щук от времени функцией

$$y = d_0 * x^2 + d_1 * x + d_2$$

Параметры d0, d1, d2 идентифицировать с помощью метода наименьших квадратов. Сравнить значения стандартного отклонения. Вычислить абсолютное и относительное отклонение для каждого параметра.

Индивидуальное задание №4. Обработка изображений с использованием языка Python.

Критерии оценивания:

Результаты контрольной работы и выполнения индивидуальных заданий оцениваются как «зачтено» или «не зачтено».

В контрольной работе результат «зачтено» выставляется, если студент дал больше 60% правильных ответов.

«Не зачтено» за контрольную работу студент получает в случае, если дано верных ответов меньше 60%.

В индивидуальном задании результат «зачтено» выставляется, если верно выполнено более 60% индивидуального задания.

Результат «не зачтено» студент получает за индивидуальное задание, если выполнено менее 60% задания.

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачёт в седьмом семестре проводится в письменной форме по билетам. Билет состоит из двух частей. Продолжительность зачета 1,5 часа.

Обе части содержат по одному вопросу, проверяющему индикаторы достижения компетенций: РООПК-2.1, РООПК-2.2, РООПК-2.3, РООПК-3.1, РООПК-3.2, РООПК-3.3.

Перечень теоретических вопросов:

- 1. Определение модели. Основные свойства модели.
- 2. Классификация моделей по типу решаемых задач, уровням общности, формам представления и обработки информации.
- 3. Изоморфные и гомоморфные модели. Статические и детерминированные модели.
- 4. Аналитические и имитационные модели. Прагматические и познавательные модели.
- 5. Этапы модельного исследования.
- 6. Определение задачи идентификации. Постановка задачи идентификации.
- 7. Структурная и параметрическая идентификация модели. Линейные модели.
- 8. Параметрическая идентификация моделей. Критерии близости.
- 9. Что описывает модель диахронического скачка? Какая тригонометрическая функция используется в модели диахронического скачка?
- 10. Простейшая модель страхового процесса. Описание объекта моделирования.
- 11. Простейшая модель страхового процесса. Модель данных. Модель Эрланга.
- 12. Математическая модель совместного существования двух биологических видов (популяций) типа "хищник жертва" (модель Вольтерра Лотки). Привести примеры применения модели в различных сферах деятельности человека.
- 13. Какие задачи решаются при компьютерной обработке изображений? Как записывается простая модель формирования изображения?
- 14. Дискретизация и квантование в компьютерной обработке изображения.
- 15. Пространственное и яркостное разрешение.
- 16. Методы увеличения и уменьшения цифровых изображений.
- 17. Смежность, связность, области и границы.
- 18. Четверки и восьмерка соседей пикселя цифрового изображения. Дискретный путь. Меры расстояния между пикселями.
- 19. Гистограмма цифрового изображения. Процедура эквализации гистограммы цифрового изображения и метод приведения гистограмм.
- 20. Локальные методы улучшения изображений.
- 21. Использование гистограммных статистик для улучшения изображения.
- 22. Основы пространственной фильтрации. Свертка и корреляция.
- 23. Линейные сглаживающие фильтры.
- 24. Медианный фильтр.
- 25. Аддитивный шум. Импульсный шум. Мультипликативный шум.
- 26. Модель процесса искажения/восстановления изображения.
- 27. Гауссов шум. Шум Рэлея. Шум Эрланга (гамма-шум). Экспоненциальный шум. Равномерный шум. Импульсный шум.
- 28. Основы фильтрации изображений. Усредняющие фильтры.
- 29. Основы фильтрации изображений. Фильтры, основанные на порядковых статистиках.
- 30. Пространственные фильтры повышения резкости. Производные функции яркости цифрового изображения.

- 31. Повышение резкости изображений с использованием вторых производных: лапласиан.
- 32. Частотные методы обработки изображения.
- 33. Преобразование Фурье дискретного сигнала: двумерное и одномерное.
- 34. Низкочастотные и высокочастотные фильтры.
- 35. Методы машинного обучения. Что называется методами машинного обучения? Предмет машинного обучения. Основные составляющие машинного обучения.
- 36. Дескрипторы цифрового изображения. Моменты Хью: общая характеристика.
- 37. Методы обучения по прецедентам. Прецеденты. Обучающая выборка. Алгоритм обучения. Как делятся методы обучения по прецедентам.
- 38. Кластеризация.

Критерии оценивания:

Результаты зачета определяются как «зачтено» или «не зачтено». «Зачтено» выставляется, если студент дал больше 60% правильных ответов. «Не зачтено» студент получает в случае, если дано верных ответов меньше 60%.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тест

- 1. Указать верное объяснение термина. При работе с цифровым изображение сегментация изображения это (РООПК-2.3):
 - а. методы уменьшения объема памяти, необходимого для хранения изображения, или сужения полосы пропускания канала, требуемой для его передачи
 - b. разделение изображение на составные части или объекты
 - с. процесс, который присваивает некоторому объекту идентификатор (например, «транспортное средство») на основании его описателей
 - d. методы и модели, связанные с повышением визуального качества изображения

Ключ: b

- 2. Указать верное объяснение термина. При работе с цифровым изображение улучшение изображения это (РООПК-2.3):
 - а. методы уменьшения объема памяти, необходимого для хранения изображения, или сужения полосы пропускания канала, требуемой для его передачи
 - b. разделение изображение на составные части или объекты
 - с. процесс, который присваивает некоторому объекту идентификатор (например, «транспортное средство») на основании его описателей
 - d. методы и модели, связанные с повышением визуального качества изображения

Ключ: d

- 3. Указать верное объяснение термина. При работе с цифровым изображение сжатие изображения это (РООПК-2.3):
 - а. методы уменьшения объема памяти, необходимого для хранения изображения, или сужения полосы пропускания канала, требуемой для его передачи
 - b. разделение изображение на составные части или объекты

- с. процесс, который присваивает некоторому объекту идентификатор (например, «транспортное средство») на основании его описателей
- d. методы и модели, связанные с повышением визуального качества изображения

Ключ: а

- 4. Указать верное объяснение термина. При работе с цифровым изображение распознавание изображения это (РООПК-2.3):
 - а. методы уменьшения объема памяти, необходимого для хранения изображения, или сужения полосы пропускания канала, требуемой для его передачи
 - b. разделение изображения на составные части или объекты
 - с. процесс, который присваивает некоторому объекту идентификатор (например, «транспортное средство») на основании его описателей
 - d. методы и модели, связанные с повышением визуального качества изображения.

Ключ: с

- 5. Указать пропущенное слово (правильных ответов может быть несколько, укажите все). Модель изображения можно определить как двумерную функцию f(x, y), где x u y координаты в пространстве (конкретно, на плоскости), значение, которой в любой точке, задаваемой парой координат (x, y), называется ? изображения в этой точке (РООПК-2.1, РООПК-2.2).
 - а. контрастностью
 - b. интенсивностью
 - с. яркостью
 - d. прозрачностью

Ключ: b,с

- 6. Выбрать правильный ответ. Является ли точной моделью животного его клон? (РООПК-2.1, РООПК-2.2).
 - а. да
 - b. нет

Ключ: 1(да)

- 7. Выбрать правильный ответ. Равноценны ли с информационной точки зрения чертежно-проектная документация здания и его мысленное представление автором проекта? (РООПК-2.1, РООПК-2.2).
 - а. да
 - b. нет

Ключ: а

8. Указать верный ответ Дан фрагмент монохромного изображения L=4: (РООПК-2.3, РООПК-3.1, РООПК-3.2)

0	1	2	1
3	2	1	3
1	3	2	2

Провести квантование изображения и преобразовать изображение в черно-белое(0-1).

a.			
0	0	1	0

1	1	0	1
0	1	1	1
b.			
0	1	1	0
1	0	0	1
0	0	2	0
c.			
0	1	1	1
1	0	0	1
0	0	1	1
d.			
0	1	1	0
1	0	0	1
0	0	0	1

Ключ: а

9. Указать верный ответ. Дан фрагмент изображения (РООПК-2.3, РООПК-3.3).:

214	230	229	225	
215	226	227	222	
230	237	224	217	
236	232	217	207	
236	232	217 215	207	

Чему равно максимальное значение яркости в $N_4(q)$ окрестности, выделенного пиксела q.

- a. 224.
- b. 237.
- c. 232.
- d. 208.

Ключ: с (232)

10. Указать верный ответ. На фрагменте изображения выделена окрестность пиксела q(x,y) в метрике L_{∞} (РООПК-2.3, РООПК-3.3).:

		TIFIKC	Cha q	(λ, y)	в метри
132	117	108	100	96	
122	109	101	99	100	
120	108	100	99	100	_
117	106	97	95	96	
105	95	87	85	86	
90	81	77	75	75	
80	73	70	69	70	
79	74	70	69	70	
85	81	78	76	74	
97	94	89	87	84	

Указать в метрике радиус, выделенной окрестности пиксела q(x, y).

- a. -2.
- b. 3.
- c. 0.
- d. 1.

Ключ: d

Информация о разработчиках

Шельмина Елена Александровна, к.ф.-м.н., доцент, кафедра вычислительной математики и компьютерного моделирования, доцент.

Стребкова Екатерина Александровна, кафедра вычислительной математики и компьютерного моделирования, старший преподаватель.