Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства (Биологический институт)

УТВЕРЖДЕНО: Директор Д. С. Воробьев

Рабочая программа дисциплины

Радиобиология

по направлению подготовки

06.03.01 Биология

Направленность (профиль) подготовки: **Биология**

Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2025**

СОГЛАСОВАНО: Руководитель ОП В.В. Ярцев

Председатель УМК А.Л. Борисенко

Томск – 2025

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

ОПК-6 Способен использовать в профессиональной деятельности основные законы физики, химии, наук о Земле и биологии, применять методы математического анализа и моделирования, теоретических и экспериментальных исследований, приобретать новые математические и естественнонаучные знания, используя современные образовательные и информационные технологии.

ПК-1 Способен участвовать в исследовании биологических систем и их компонентов, планировать этапы научного исследования, проводить исследования по разработанным программам и методикам, оптимизировать методики под конкретные задачи.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИОПК-6.1 Использует основные законы физики, химии, наук о Земле и биологии в профессиональной деятельности

ИПК-1.1 Применяет полевые и лабораторные методы исследования биологических объектов с использованием современной аппаратуры и оборудования в соответствии с поставленными задачами

2. Задачи освоения дисциплины

В результате освоения дисциплины обучающийся должен: Знать основы физики (раздел ядерная физика), химии и фундаментальных биологических наук.

Уметь использовать полученные знания в жизненных ситуациях; прогнозировать последствия своей профессиональной деятельности, нести ответственность за свои решения.

Уметь эксплуатировать современную дозиметрическую аппаратуру для практического применения и выполнения лабораторных и научно-исследовательских работ.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплины (модули)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор. Дисциплина входит в модуль Профессиональный модуль «Физиология человека и животных».

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Пятый семестр, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения курса студенты предварительно проходят подготовку по дисциплинам «Физика», «Химия», «Биохимия». Дисциплина «Радиобиология» является логическим продолжением в цепи дисциплин по принципу «от простого к более сложному», и сама является основой для углубленного изучении специальных дисциплин.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

-лекции: 16 ч. -семинар: 26 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. ВВЕДЕНИЕ

Предмет, задачи, история развития, этапы и периоды становления радиобиологии. Связь с другими науками и современные проблемы радиобиологии.

Тема 2. ФИЗИЧЕСКИЕ ОСНОВЫ РАДИОБИОЛОГИИ

Основные сведения о строении вещества. Строение атомов. Массовое число, атомный номер. Явление изотопии.

Естественная и искусственная радиоактивность. Основные виды ионизирующих излучений (ИИ), их свойства. Радиоактивный распад ядер, виды распада. Закон радиоактивного распада. Единицы активности радионуклидов. Использование радиоактивных изотопов в науке, медицине и производстве.

Основы дозиметрии ИИ. Понятие о дозе. Единицы измерения дозы. Поглощенная и эквивалентная дозы. Методы дозиметрии ИИ: ионизационная камера, сцинтилляционный метод, химические методы дозиметрии.

Тема 3. ПОГЛОЩЕНИЕ ЭНЕРГИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ ВЕЩЕСТВОМ

Общий принцип Гроттгуса. Дискретный характер поглощения энергии ИИ. Взаимодействие ИИ с веществом. Возбуждение и ионизация атомов и молекул. Образование пар ионов.

Линейная плотность ионизации (ЛПИ) и линейная передача энергии (ЛПЭ). Взаимодействие заряженных частиц с веществом. Особенности взаимодействия фотонного излучения с веществом: фотоэффект, эффект Комптона, образование электронпозитронных пар. Поглощение нейтронного излучения: косвенная ионизация, наведенная радиоактивность.

Особенности поглощения энергии ИИ биологическим веществом. Относительная биологическая эффективность (ОБЭ) ИИ. Связь относительной биологической эффективности с линейной передачей энергии. Зависимость ОБЭ от условий и объекта облучения.

Тема 4. ПРЯМОЕ ДЕЙСТВИЕ ИИ

Миграция энергии и заряда. Кривые "доза-эффект". Принципы попадания и мишени. Количественные закономерности действия ИИ. Действие редко и плотноионизирующих излучений. Инактивирующая доза, одно- и многоударные процессы.

Последовательность стадий прямого действия ИИ. Первичные физические процессы. Физико-химическая стадия действия ИИ. Химическая стадия действия ИИ. Миграция энергии излучения в биологических структурах. Модификация прямого повреждения макромолекул: кислородный эффект, влияние температуры, роль молекулпримесей. Прямое действие ИИ на ферменты и нуклеиновые кислоты.

Тема 5. КОСВЕННОЕ ДЕЙСТВИЕ ИИ

Радиационно-химические превращения молекул воды. Влияние продуктов радиолиза воды на инактивацию молекул в растворах. Количественные характеристики косвенного действия ИИ. Эффект Дейла (разбавления). Радиочувствительность биомакромолекул. Модификация радиолиза макромолекул.

Свободнорадикальные процессы в биосубстратах. Цепные свободнорадикальные реакции при действии ИИ. Образование перекисей и других продуктов окисления в облучаемых липидах. Роль свободных радикалов липидов в непрямом эффекте инактивации биомакромолекул.

Тема 6. ДЕЙСТВИЕ ИИ НА КЛЕТКУ

Реакция клеток на облучение. Первичные физико-химические процессы в облученной клетке. Прямое и непрямое действие ИИ на клетки. Свободные радикалы в облученной клетке и методы их определения. Действие ИИ на макромолекулы и клеточные органеллы. Задержка деления клеток. Радиочувствительность на разных стадиях клеточного цикла.

Количественные характеристики клеточной гибели. Зависимость радиочувствительности клеток от мощности и фракционирования дозы, линейной передачи энергии ИИ, числа и размеров хромосом. Повреждение и репарация ДНК в облученной клетке.

Формы клеточной гибели. Критерии гибели клеток. Репродуктивная гибель. Повреждение уникальных структур - специфика действия ИИ. Генетическое действие ИИ: генные мутации, хромосомные аберрации; их количественные закономерности, связь с репродуктивной гибелью.

Интерфазная гибель облученных клеток. Критерии интерфазной гибели; временные и дозовые характеристики. Механизмы апоптоза. Интерфазная гибель как вариант апоптоза.

Тема 7. РАДИОЧУВСТВИТЕЛЬНОСТЬ БИОСИСТЕМ

Понятие о ЛД50/30. Радиочувствительность биомолекул: белки, нуклеиновые кислоты, фосфолипиды. Радиочувствительность клеток, тканей и органов. Группы критических органов. Самообновляющиеся системы. Костномозговой синдром, желудочно-кишечный и ЦНС-синдром - как функция дозы облучения. Видовая радиочувствительность. Зависимость радиочувствительности от пола, возраста и состояния организма. Индивидуальная радиочувствительность.

Тема 8. ВОССТАНОВЛЕНИЕ ОТ ЛУЧЕВОГО ПОВРЕЖДЕНИЯ

Процессы восстановления в облученных клетках. Темновая репарация и фотореактивация. Зависимость восстановления от времени и характера облучения, количества поглощенной энергии и скорости ее накопления. Зависимость темпов восстановления в различных системах организма от присущей им скорости физиологических процессов регенерации.

Тема 9. МОДИФИКАЦИЯ ДЕЙСТВИЯ ИИ

Принцип действия радиопротекторов. Понятие о факторе изменения дозы. Основные классы радиопротекторов: серосодержащие и производные индолилалкиламинов. Возможные механизмы действия радиопротекторов: молекулярный, клеточный и организменный уровни. Особенности защиты от нейтронного и внутреннего облучения.

Тема 10. БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ МАЛЫХ ДОЗ ИИ

Критерии определения малых доз облучения. Биологические эффекты облучения в малых дозах. Радиационный гормезис. Радиационно-индуцированный адаптивный ответ. Общая неспецифическая реакция организмов на облучение в малых дозах. Количественная оценка биологического действия ИИ в малых дозах. Механизмы действия ИИ в малых дозах на клетки. Роль биомембран в механизме действия малых доз ИИ.

Тема 11. ЛУЧЕВАЯ БОЛЕЗНЬ ЧЕЛОВЕКА И ЖИВОТНЫХ

Острая лучевая болезнь. Зависимость клинической формы острой лучевой болезни, степени тяжести и прогноза течения от поглощенной дозы. Периодизация острой лучевой болезни: период первичных реакций, латентный период, период разгара и период восстановления. Формы острой лучевой болезни: костномозговая, кишечная, токсемическая, церебральная. Местные и комбинированные лучевые повреждения.

Хроническая лучевая болезнь, вызываемая внешним и внутренним облучением. Кумуляция дозы.

Выздоровление от лучевой болезни и отдаленные последствия облучения. Соматические, канцерогенные и генетические последствия.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем проведения семинаров, на которых ведется контроль посещаемости, студенты обсуждают в устной форме наиболее сложные вопросы изученных тем, студентам предлагаются контрольные работы, тесты по лекционному материалу и задачи. Контрольная точка фиксирует результаты обучения не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в пятом семестре проводится в устной форме по билетам. Экзаменационный билет состоит из трех вопросов. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

Электронный учебный курс по дисциплине в электронном университете «iDO»: http://lms.tsu.ru/course/view.php?id=976

Курс содержит:

- Список учебной литературы по курсу;
- видеотека с учебными и научно-популярными фильмами по курсу;
- тексты и презентации лекций;
- программы семинарских занятий;
- -методические указания, инструкции к приборам и практические задания по дозиметрии;
- методические рекомендации для выполнения итогового теста по курсу и решения задачи.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- **Кудряшов Ю.Б.** Радиационная биофизика (ионизирующие излучения)/ Под ред.В.К.Мазурика, М.Ф.Ломанова.-М.:ФИЗМАТЛИТ, 2004.-448 с.
- **Ярмоненко С.П.** Радиобиология человека и животных: [Учебное пособие для биологических и медицинских специальностей вузов].-М.:Высшая школа, 2004.-548c
- Машкович В.П., Панченко А.М. Основы радиационной безопасности: Учебное пособие для вузов.- М.: Энергоатомиздат, 1990.-176с.

- Эйдус Л.Х. Физико-химические основы радиобиологических процессов и защиты от излучений.-М.:Атомиздат,1972.-240с.
- Радиация и патология : учеб. пособие / А. Ф. Цыб, Р. С. Будагов, И. А. Замулаева и др. ; под общ. ред. А. Ф. Цыба]. М. : Высшая школа , 2005. 340 с.
 - б) дополнительная литература:
- **Радиобиология: термины и понятия** : энцикл. справ. / Г. Г. Верещако, А. М. Ходосовская ; Нац. акад. наук Беларуси, Ин-т радиобиологии. Минск : Беларуская навука, 2016. 340 с.
- Ободовский И.М. Основы радиационной и химической безопасности / И. М. Ободовский. Долгопрудный: ИД Интеллект 2013. 300 с.
- Радиобиология: учебник / Н. П. Лысенко, В. В. Пак, Л. В. Рогожина, З. Г. Кусурова; под редакцией Н. П. Лысенко, В. В. Пака. 6-е изд., стер. Санкт-Петербург: Лань, 2023. 572 с. ISBN 978-5-507-46439-5. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/310166 (дата обращения: 24.08.2025). Режим доступа: для авториз. пользователей.
- **Трошин, Е. И.** Тесты по радиобиологии: учебное пособие / Е. И. Трошин, Ю. Г. Васильев, И. С. Иванов. Санкт-Петербург: Лань, 2022. 240 с. ISBN 978-5-8114-1685-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/211610 (дата обращения: 24.08.2025). Режим доступа: для авториз. пользователей.
- Радиобиология. Биологическое действие ионизирующих излучений и лучевые поражения сельскохозяйственных животных: учебное пособие для вузов / Д. А. Саврасов, С. С. Карташов, А. А. Михайлов [и др.]. Санкт-Петербург: Лань, 2024. 168 с. ISBN 978-5-507-49648-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/422504 (дата обращения: 24.08.2025). Режим доступа: для авториз. пользователей.
- Джойнер М.С. Основы клинической радиобиологии [Электронный ресурс] : пер. с англ. / Джойнер М.С., Ван дер Когель О.Дж.. М. : "БИНОМ. Лаборатория знаний", 2013. 600 с. Электрон. версия печат. публ. Доступ из электрон.-библ. системы "Издательство "Лань".
 - в) ресурсы сети Интернет:

Радиационная биология. Радиоэкология: журнал: Рос. АН. - Москва: Наука, 1993-. - . URL: http://elibrary.ru/contents.asp?titleid=7973

Научная электронная библиотека eLIBRARY.RU [Электронный ресурс]. – Электрон. дан. – М., 2000-. – URL: http://elibrary.ru/defaultx.asp?

Издательство «Лань» [Электронный ресурс] : электрон.-библиотечная система. – Электрон. дан. – СПб., 2010- . – URL: http://e.lanbook.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office 2021 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/

- ЭБС Консультант студента http://www.studentlibrary.ru/
- Образовательная платформа Юрайт https://urait.ru/
- ЭБС ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа с мультимедийным оборудованием.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лаборатория, оборудованная для проведения семинарского занятия по теме «Дозиметрия», оснащенная лабораторной мебелью, дозиметрами и радиометрами, контрольными источниками ИИ, раковиной с горячей и холодной водой.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешанном формате («Актру»).

15. Информация о разработчиках

Кувшинов Николай Николаевич, кафедра физиологии человека и животных Биологического института ТГУ, старший преподаватель.