Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

САЕ Институт «Умные материалы и технологии»

УТВЕРЖДЕНО: Директор И. А. Курзина

Оценочные материалы по дисциплине

Практикум по биоинформатике

по направлению подготовки 04.04.01 Химия 27.04.05 Инноватика

Направленность (профиль) подготовки: **Молекулярная инженерия**

Форма обучения **Очная**

Образовательная степень **Магистр**

Квалификация **Инженер-исследователь**

Год приема 2024

> СОГЛАСОВАНО: Руководитель ОП И.А. Курзина

Председатель УМК Г.А. Воронова

1. Компетенции и индикаторы их достижения, проверяемые данными оценочными материалами

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен анализировать, обобщать и использовать фундаментальные и прикладные знания в области биотехнологии для решения существующих и новых задач в профессиональной области.
- ОПК-2. Способен анализировать, интерпретировать, обобщать результаты экспериментальных и расчетнотеоретических работ в профессиональной области.
 - ПК-2. Способен к решению профессиональных производственных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РООПК-1.1. Знает основные теоретические положения, экспериментальные и расчетные методы, применяемые в профессиональной области
- РООПК-1.2. Знает теоретические основы инструментальных методов исследования веществ и материалов.
- РООПК-2.1. Знает основные требования к методам обработки результатов экспериментальных и расчетно-теоретических работ в профессиональной области.
- РООПК-2.2. Умеет анализировать, интерпретировать и обобщать данные, представленные в литературе и полученные в результате проведенных исследований в профессиональной области.
- РОПК-2.1. Анализировать имеющиеся нормативные документы по системам стандартизации, разработки и производству химической и биотехнологической продукции и предлагать технические средства для решения поставленных задач.
- РОПК-2.2. Организует и осуществляет контроль технологического процесса, входной контроль сырья и материалов, контроль качества выпускаемой продукции.

2. Оценочные материалы текущего контроля и критерии оценивания

Элементы текущего контроля:

- тестирование;
- устный опрос;
- индивидуальное задание;
- реферат.

Устный опрос (ИОПК-2.3)

Примеры тем для устного опроса

- 1. Что такое мусорная ДНК
- 2. Псевдогены, их классификация
- 3. Полиморфизм ДНК
- 4. Кодирующие и некодирующие РНК
- 5. Как найти открытую рамку считывания
- 6. Как выявить белковых партнеров
- 7. Мутации, их классификация

Критерии оценивания:

«Зачтено» - знание вопроса, владение понятийным аппаратом, научным языком и терминологией, знание ключевых проблем и основного содержания вопроса, умение оперировать понятиями по своей тематике вопроса, в целом логически корректное, но не всегда точное и аргументированное изложение;

«Не зачтено» - незнание либо отрывочное представление о материале вопроса, неумение оперировать понятиями дисциплины, неумение логически определенно и последовательно излагать ответ

Индивидуальное задание (ИОПК 2.3; ИОПК 3.1; ИОПК 3.2)

Пример индивидуального задания по теме «Моделирование 3D-структуры белков на сервере AlphaFold»

Алгоритм моделирования:

- В Google написать запрос Alpha Fold Collab.
- Заходим в ссылку Google Collaboration
- Вводим в окно первичную последовательность белка, структуру, которого хотим предсказать в формате Fasta. Первичную структуру белка можем взять с базы Uniprot.
- После в блокноте Google Collab нажимаем опцию выполнить все и ожидаем результатов предсказания. По завершению процесса, происходит автоматическое скачиваение данных предсказания, а также pdb файлы предсказанных структур.
- Выбираем структуру, которая имеет большую точность предсказания по метрическому показателю PLDDT
- Открываем pdb файл нашей модели с использованием инстурментария молекулярного редактирования PyMol и экспортируем этот же файл в нужную нам рабочую директорию (это необходимо, чтобы корректно завершить конвертацию файла, в противном случае, некоторые

программы могут не распознавать наш файл.)

- Файл pdb с нашим белком готов к использованию.
- Оценка результатов моделирования.

Критерии оценивания:

«Зачтено» выставляется в случае, если задание выполнено в соответствии со всеми шагами, предусматриваемые для выбранного задания.

В случае, если какой-то из шагов не выполнен, задание возвращается на доработку

Тестирование (ИОПК 2.3; ИОПК 3.1; ИОПК 3.2)

Примеры тестовых заданий

- 1. Программа для молекулярного докинга
 - a. AutoDock
 - b. BLAST
 - c. SWISS-MODEL
 - d. BioEdit
 - e. Clustal
- 2. Докинг, при котором длины связей, углы и торсионные углы партнеров докинга остаются неизменными в процессе моделирования
 - а. Жесткий
 - b. Гибкий
 - с. Однократный
 - d. Последовательный
- 3. Докинг, при котором разрешается вращение вокруг каких-либо связей в молекуле самого лиганда. Белок при этом остается «жёсткой» структурой
 - а. Гибкий
 - b. Жесткий

- с. Однократный
- d. Последовательный
- 4. Область практического применения молекулярного докинга в медицине
 - а. Компьютерный дизайн лекарств
 - b. Исследования механизмов действия рецепторов;
 - с. Поиск лигандов для факторов транскрипции и прочих регуляторных белков.
 - d. очистка вод, грунтов и атмосферы с использованием ферментов
- 5. На каком принципе основано моделирование пространственного строения белка
 - а. Структурная гомология
 - b. Гомология последовательностей
 - с. Основная догма молекулярной биологии
 - d. Схожесть структур
 - е. Идентичность структур
- 6. Первый шаг в моделировании пространственной структуры белка
 - а. Поиск аминокислотной последовательности в банках белков
 - b. Поиск белка шаблона с помощью алгоритма BLAST
 - с. Моделирование на сервере SWISS-MODEL
 - d. Оценка качества модели
- 7. Последовательность аминокислот в полипептидной цепи это
 - а. Первичная структура белка
 - b. Вторичная структура белка
 - с. Третичная структура белка
 - d. Четвертичная структура белка
- 8. Спирализация полипептидной цепи это
 - а. Вторичная структура белка
 - b. Первичная структура белка
 - с. Третичная структура белка
 - d. Четвертичная структура белка
- 9. Упаковка полипептидной белки в глобулу это
 - а. Третичная структура белка
 - b. Первичная структура белка
 - с. Вторичная структура белка
 - d. Четвертичная структура белка
- 10. Ассоциация нескольких белковых глобул в функционально единую молекулу это
 - а. Четвертичная структура белка
 - b. Первичная структура белка
 - с. Вторичная структура белка
 - d. Третичная структура белка

Критерии оценивания:

Тесты содержат по 10 вопросов. «Зачтено» выставляется при предоставлении 7 и более правильных ответов.

Реферат (ИОПК 2.3; ИОПК 3.1; ИОПК 3.2)

Примерные темы рефератов:

- Пространственная транскриптомика рака полости рта
- Транскриптомика опухолевых гибридных клеток на уровне единичных клеток
- Транскриптомика циркулирующих опухолевых клеток на уровне единичных клеток
- Мутационный ландшафт рака лёгкого

- Полногеномный поиск ассоциаций (GWAS) герминальных вариантов с риском метастазирования и рецидивирования рака лёгкого
- Дизайн олигонуклеотидов для гибридизационного обогащения ДНК-последовательностей
- Биоинформатический анализ публичных данных TCGA

Критерии оценивания:

Реферативная работа должна содержать:

- титульный лист;
- содержание;
- введение;
- основная часть;
- заключение;
- список использованных источников;
- приложения (при необходимости).

Реферативная работа защищается перед преподавателем в виде устного доклада с презентацией. Длительность выступления 5-7 минут, включая вопросы.

Работа считается зачтенной при соответствии всем вышеуказанным критериям

При отсутствии какого-либо из элементов работа отправляется на доработку

3. Оценочные материалы итогового контроля (промежуточной аттестации) и критерии оценивания

Зачет с оценкой в третьем семестре проводится устной форме по билетам. Продолжительность зачета 1,5 часа.

Билет содержит 3 вопроса, проверяющие ИОПК 2.3; ИОПК 3.1; ИОПК 3.2.

Примерный перечень теоретических вопросов

- 1. Перечислите функциональные элементы генома
- 2. Дайте анализ первичной структуры ДНК и её функции. Проект ENCODE.
- 3. Перечислите различные базы данных по генам.
- 4. Укажите классификацию псевдогенов. Опишите механизмы функционального действия процессированных псевдогенов.
- 5. Опишите регуляторные участки в геноме: промотор, ТАТА-бокс, энхансер, сайленсер, инсулятор.
- 6. Опишите повторяющиеся последовательности в ДНК. Тандемные повторы: микросателлиты, минисателлиты и сателлиты. Перечислите болезни экспансии тринуклеотидных повторов.
- 7. Опишите диспергированные повторы: транспозоны и ретротранспозоны. Открытие мобильных элементов.
 - 8. Опишите полиморфизм ДНК.
- 9. Опишите функционирование вторичной структуры ДНК. G-квадруплексы в промоторах и теломерах.
 - 10. Укажите основные ресурсы для анализа функциональных элементов генома
- 11.Сервер NCBI. Укажите основные базы данных расположенные на нём: GenBank, Genome, Gene, dbSNP,
- 12.Опишите базы данных dbEST, UniGene, PubMed, OMIM, Protein, и другие. Запросы онлайн.
 - 13.Опишите геномные баузеры: MapView, USCS, ensemble.

- 14. Напишите устройство и пользование баузером USCS. Опишите создание индивидуальных сессий. Обмен информацией в сессиях. Сборки геномов.
- 15.Опишите трэки, управление и настройки трэков. Трэк гены. Сравнение различных аннотаций генов человека.
 - 16.Опишите трэки мРНК и EST. Совместный анализ трэков гены, мРНК и EST.
 - 17.Опишите анализ структуры локуса генома человека.
 - 18.Опишите кодирующие и некодирующие РНК. lncRNA, miRNA.
 - 19.Опишите псевдогены. Повторяющиеся последовательности. Семейство Alu
- 20. Опишите экспрессионный анализ. Анализ данных микрочипов Affymetrix. Устройство пробсета. База данных BioGPS.
- 21. Опишите анализ данных RNAseq разных проектов. Количественный и качественный анализ. Как проходит выбор вида представления данных?
 - 22. Укажите данные проекта Fantom5.
 - 23. Опишите регуляцию с помощью miRNA. CLASH data.
 - 24. Опишите антисмысловые взаимодействия.
 - 25. Опишите транскрипционные факторы.
- 26. Опишите Гистоновые модификации. Метилирование. Чувствительность к ДНКазам.
- 27. Как проводится поиск открытой рамки считывания. Определение белковых изоформ продукта. Анализ доменной структуры белка.
 - 28. Опишите онлайн инструменты: CDS, CDART. База данных Pfam.
- 29. Как происходит выявление белковых партнёров. Пост-трансляционные модификации белка.
- 30. Как происходит предсказание функции белка на основе его взаимодействий с белками-партнерами. Анализ данных базы «IntAct Molecular Interaction Database».
- 31. Как происходит анализ клеточных путей. База данных neXtProt. Данные проекта «The human protein atlas». PeptideAtlas. Uniprot.
 - 32. Опишите сравнительно-геномный анализ локуса.
- 33. Опишите консервативность гена, эволюция локуса. Ортологи, паралоги, гомологи. Анализ генов паралогов в геноме человека.
- 34. Опишите особенности анализа экспрессии генов в опухолях и при исследовании хронических заболеваний человека База данных GEO. Датасеты, их устройство. Депонирование данных. Инструменты для анализа данных. GEO2R.

Критерии оценивания

Оценка отлично (5 баллов) - выставляется студенту, показавшему всесторонние, систематизированные, глубокие знания учебной программы дисциплины, проявляющему интерес к данной предметной области, продемонстрировавшему умение уверенно и творчески применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений.

Оценка хорошо (4 балла) - выставляется студенту, если он грамотно и по существу излагает материал, умеет применять полученные знания на практике, но недостаточно грамотно обосновывает полученные результаты.

Оценка удовлетворительно (3 балла) - выставляется студенту, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он освоил основные разделы учебной программы, необходимые для дальнейшего обучения, и может применять полученные знания по образцу в стандартной ситуации.

Оценка неудовлетворительно (2 балла) - выставляется студенту, который не знает большей части основного содержания учебной программы дисциплины, допускает грубые

ошибки в формулировках основных принципов и не умеет использовать полученные знания при решении типовых задач.

4. Оценочные материалы для проверки остаточных знаний (сформированности компетенций)

Тестирование.

1. Определение молекулярного докинга

- а. Это вычислительный метод предсказания взаимного положения, ориентации и конформаций двух молекул, образующий супрамолекулярный комплекс.
- b. Это экспериментальный метод предсказания взаимного положения, ориентации и конформаций двух молекул, образующий супрамолекулярный комплекс.
- с. Метод позволяющий предсказать устойчивую для образования комплекса ориентацию молекулы.

2. Докинг, при котором разрешается вращение вокруг каких-либо связей в молекуле самого лиганда. Белок при этом остается «жёсткой» структурой

- а. Гибкий
- b. Жесткий
- с. Однократный

3. ДНК полиморфизм – это

- а. Понятие из объектно-ориентированного программирования, которое позволяет разным сущностям выполнять одни и те же действия.
- b. Существование в популяции двух или большего числа альтернативных форм (аллелей) определенного локуса хромосомы (гена)
- с. Полиморфный признак, выявляемый методами молекулярной биологии науровне нуклеотидной последовательности ДНК, для определенного гена или для любого другого участка хромосомы при сравнении различных генотипов, особей, пород, сортов, линий.

4. Упаковка полипептидной белки в глобулу это

- а. Третичная структура белка
- b. Первичная структура белка
- с. Вторичная структура белка

5. Третичная структура белков- это

- а. Пространственное расположение полипептидной цепи белка на отдельных ее участках в виде спирали или слоя (листа).
- b. Это компактная, трехмерная упаковка белковой цепи в пространстве.
- с. Строго определенная последовательность аминокислотных остатков в линейной полипептидной цепи.

6. Первичная структура белка- это

- а. Пространственное расположение полипептидной цепи белка на отдельных ее участках в виде спирали или слоя (листа).
- b. Это компактная, трехмерная упаковка белковой цепи в пространстве.
- с. Строго определенная последовательность аминокислотных остатков в линейной полипептидной цепи.

7. Вторичная структура белка- это

- а. Пространственное расположение полипептидной цепи белка на отдельных ее участках в виде спирали или слоя (листа).
- b. Это компактная, трехмерная упаковка белковой цепи в пространстве.
- с. Строго определенная последовательность аминокислотных остатков в линейной полипептидной цепи.

8. Программа для молекулярного докинга

- a. AutoDock
- b. BLAST

c. SWISS-MODEL

9. Мусорная ДНК-это

- а. Части геномной ДНК организмов, которые кодируют последовательности белков.
- b. Состоит из сложных, часто повторяющихся последовательностей генетического кода и участвует в кодировании белков
- с. Части геномной ДНК организмов, которые не кодируют последовательности белков.

10. Область практического применения молекулярного докинга в медицине

- а. Компьютерный дизайн лекарств
- b. Исследования механизмов действия рецепторов;
- с. Поиск лигандов для факторов транскрипции и прочих регуляторных белков.

Ответы к тесту определения остаточный знаний	
No	ответ
1	a
2	С
3	b
4	a
5	b
6	С
7	a
8	a
9	С
10	С

Информация о разработчиках

Воробьев Ростислав Сергеевич, лаборатория биоразнообразия и экологии, Обособленное структурное подразделение "Научно-исследовательский институт биологии и биофизики Томского государственного университета", младший научный сотрудник.