Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Физика атомного ядра и элементарных частиц

по направлению подготовки

03.03.02 Физика

Профиль подготовки «Фундаментальная физика»

> Форма обучения **Очная**

Квалификация **Бакалавр**

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск – 2023

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- —ОПК-1 Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности
- —ОПК-2 Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные;
- ПК-1 Способен проводить научные исследования в выбранной области с использованием современных экспериментальных и теоретических методов, а также информационных технологий.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- -ИОПК 1.1 Знает основные законы, модели и методы исследования физических процессов и явлений
- –ИОПК-2.2. Анализирует и интерпретирует экспериментальные и теоретические данные, полученные в ходе научного исследования, обобщает полученные результаты, формулирует научно обоснованные выводы по результатам исследования;
- –ИОПК-2.3. Владеет практическими навыками представления результатов научных исследований в устной и письменной форме.
- –ИПК-1.1. Собирает и анализирует научно-техническую информацию по теме исследования, обобщает научные данные в соответствии с задачами исследования.

2. Задачи освоения дисциплины

- Освоить понятийный аппарат теоретической ядерной физики и физики элементарных частиц.
- Научиться применять понятийный аппарат теоретической ядерной физики для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 6, экзамен.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 32 ч.;
- лабораторные работы: 32 ч.
 - в том числе практическая подготовка: 32 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Появление и развитие ядерной физики.

Исторические вехи развития ядерной физики. Квантово-механический язык ядерной физики. Ядерная медицина. Атомная и перспективная энергетика.

Тема 2. Свойства атомных ядер.

Масса. Заряд, Чётность. Спин. Дипольный и квадрупольные электрические моменты. Магнитный момент. Изоспин. Странность. Измеряемые в опыте характеристики ядер.

Тема 3. Модели ядер.

Микроскопические и коллективные модели ядер. Капельная и газовая модели. Формула Вейцзеккера. Оболочечная модель.

Тема 4. Радиоактивность.

Явление радиоактивности. Альфа-,бета-,гамма-распады. К-захват. Дозиметрия.

Тема 5. Ядерные реакции.

Виды реакций. Энергетическая зависимость выходов реакций. Принцип детального равновесия. Первичный нуклеосинтез. Звёздный нуклеосинтез.

Тема 6. Кинематика ядерных реакций.

Система центра масс и лабораторная система. Переходы из одной системы в другую. Сечения в различных системах. Лоренц преобразования в движущиеся системы.

Тема 7. Деление и синтез.

Условия возникновения деления. Модели деления. Энергетический выход реакций деления. Распределение продуктов деления по массе, энергии. Условие развития синтеза. Скорость термоядерных реакций. Катализ реакций.

Тема 8. Формальная теория рассеяния. Сечения.

Классическая и квантовая теория рассеяния. Резерфордовское рассеяние. Связь амплитуды рассеяния и сечения. Оптическая теорема. Парциально-волновые разложения.

Тема 9. Модели ядерных реакций.

Прямые и идущие через стадию составного ядра реакции. Резонансные и нерезонансные вклады. Формализм Хаузера-Фешбаха. Оптические модели. Реакции срыва и подхвата. Феноменология барион-барионного взаимодействия.

Тема 10. Теория многочастичных реакций. Связывание каналов.

Связанные уравнения Шрёдингера и Липпмана-Швингера. Уравнения Фаддеева. Модельные расчёты.

Тема 11. Физика субатомных частиц.

Классификация частиц по мультиплетам. Типы и характеристики фундаментальных взаимодействий. Релятивистские инварианты. Лагранжианы и сечения. Коэффициенты Клебша-Гордана. Стандартная модель и её недостатки.

Тема 12. Современные теории. КЭД. КХД.

Процессы между частицами. Сечения. Релятивистские столкновения. Вывод сечения Резерфордовского рассеяния из КЭД. Проблематика КХД.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине осуществляется путём проведения двух контрольных работ в дистанционном формате и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Экзамен в 6 семестре проводится в письменной форме по билетам. Продолжительность экзамена 1.5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=30151
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине (https://www.tsu.ru/sveden/education/eduop/).
 - в) Перечень рекомендуемых лабораторных работ:
- Определение периода полураспада радиоактивного изотопа по величине αпробега;
 - 2) Определение активности радиоактивного препарата абсолютным методом;
 - 3) Определение периода полураспада долгоживущего изотопа;
 - 4) Изучение поглощения космического излучения в свинце;
 - 5) Изучение углового распределения интенсивности космического излучения;
 - 6) Определение β-активности;
 - 7) Изучение α-активности;
 - 8) Исследование характеристического рентгеновского излучения;
 - 9) Дуплетное расщепление рентгеновского излучения Fe и Mo.
 - г) Методические указания по организации самостоятельной работы студентов.

Самостоятельная работа студента включает:

- углубленное теоретическое изучение разделов курса при подготовке к лекционным и практическим занятиям;
- подготовку к обсуждению материала, в том числе самостоятельный поиск необходимых источников информации, включая научно-образовательные ресурсы сети Интернет;
- подготовку к зачету.

Вопросы, вынесенные на самостоятельное изучение.

- 1. Детектирование частиц.
- 2. Электромагнитные взаимодействия в ядрах
- 3. Спин и изоспин в ядерных реакциях.
- 4. Уравнение переноса нейтронов.

Литература к темам для самостоятельного изучения

- A) https://moodle.tsu.ru/course/view.php?id=30151 (конспекты дополнительных тем)
- Б) Айзенберг И. Механизмы возбуждения ядра / И. Айзенберг, В. Грайнер. М.: АТОМИЗДАТ, 1973 г. 348 с.
 - Глазков В. Атомная и ядерная физика (курс лекций) / В. Глазков. М.:, $2016~\Gamma$. 204~c.
- Кузьмин А. Основы теории переноса нейтронов / А. Кузьмин. Томск: ИЗДАТЕЛЬСТВО ТОМСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, 2007 г. 192 с.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Ишханов Б. Частицы и атомные ядра. Учебник / Б. Ишханов, И. Капитонов, Н. Юдин. М.: ЛКИ, 2007. 584 с.
- 2. Капитонов И. Введение в физику ядра и частиц. /И. Капитонов. М.: ФИЗМАТЛИТ, $2010 \, \text{г.} 379 \, \text{c.}$

- 3. Bianchini L. Selected exercises in Particle and Nuclear Physics / Bianchini L. Pisa: Springer, 2018 r. 374 c.
 - б) дополнительная литература:
 - Давыдов А. Теория Атомного ядра / А. Давыдов. М.: ГОСУДАРСТВЕННОЕ ИЗДАНИЕ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1958 г. 613 с.
 - Мухин К. Экспериментальная ядерная физика: Учебник. В 3-х тт. Т.1 Физика атомного ядра. (7-е изд. стер.)/ Мухин К. Санкт-Петербург: Лань, 2009 г. 384 с.
 - Мухин К. Экспериментальная ядерная физика: Учебник. В 3-х тт. Т.2 Физика ядерных реакций. (7-е изд. стер.)/ Мухин К. Санкт-Петербург: Лань, $2009 \, \text{г.} 319 \, \text{c.}$
 - Мухин К. Экспериментальная ядерная физика: Учебник. В 3-х тт. Т.3 Физика элементарных частиц. (7-е изд. стер.)/ Мухин К. Санкт-Петербург: Лань, 2009 г. 413 с.
 - Ситенко А. Лекции по теории ядра / А. Ситенко, В. Тартаковский. М.: АТОМИЗДАТ, 1972 г. 351 с.
 - Greiner W. Nuclear models // W. Greiner, J. Marun. Berlin.: Springer, 1995 Γ. 399 c.
 - Балдин А. Кинематика ядерных реакций / А. Балдин, В. Гольданский, И. Розенталь. М.: ГОСУДАРСТВЕННОЕ ИЗДАНИЕ ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ, 1959 г. 307 с.
 - Айзенберг И. Механизмы возбуждения ядра / И. Айзенберг, В. Грайнер. М.: АТОМИЗДАТ, 1973 г. 348 с.
 - Н. Нелипа. Введение в теорию сильно-взаимодействующих элементарных частиц / Н. Нелипа. М.: АТОМИЗДАТ, 1970 г. 488 с.
 - Greiner W. Quantum Electrodynamics (4-th Ed.) / W. Greiner, J. Reinhardt. Berlin.: Springer, $2009 \, \Gamma$. $461 \, c$.
 - Кузьмин А. Основы теории переноса нейтронов / А. Кузьмин. Томск: ИЗДАТЕЛЬСТВО ТОМСКОГО ПОЛИТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, 2007 г. 192 с.
 - в) ресурсы сети Интернет:
 - 1. Лекции профессора Ишханова (2016 г.) http://nuclphys.sinp.msu.ru/lect/ishkhanov2016/index.html
 - 2. Лекции профессора И.М. Капитонова (2016 г.) http://nuclphys.sinp.msu.ru/lect/kapitonov2016/index.html
 - 3. Ядерная физика в Интернете. Проект кафедры общей ядерной физики физического факультета МГУ. [Электронный ресурс] Режим доступа: http://nuclphys.sinp.msu.ru/ (дата обращения 15.02.2015)

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/

- 9EC IPRbooks http://www.iprbookshop.ru/
- в) профессиональные базы данных:
- библиотека оценённых экспериментальных данных ядерных сечений JANIS https://www.oecd-nea.org/jcms/pl_39910/janis
 - библиотека

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Егоров Михаил Викторович, кандидат физико-математических наук, физический факультет Томского государственного университета, старший научный сотрудник, доцент кафедры квантовой теории поля.