Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДЕНО: И.о. декана А. С. Князев

Рабочая программа дисциплины

Бионеорганическая химия как основа жизнеобеспечения

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: **Фундаментальная и прикладная химия веществ и материалов**

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2023**

СОГЛАСОВАНО: Руководитель ОП А.С. Князев

Председатель УМК Л.Н. Мишенина

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

- ПК-1 Способен планировать работу и выбирать адекватные методы решения научноисследовательских и/или производственных задач в выбранной области химии, химической технологии или смежных с химией науках.
 - ПК-3 Способен к решению профессиональных производственных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК 1.1 Разрабатывает стратегию научных исследований, составляет общий план и детальные планы отдельных стадий
- ИПК 1.2 Выбирает экспериментальные и расчетно-теоретические методы решения поставленной задачи, используя достижения современной химической науки, и исходя из имеющихся, материальных, информационных и временных ресурсов
- ИПК 1.3 Использует современное физико-химическое оборудование для получения и интерпретации достоверных результатов исследования в выбранной области химии, химической технологии или смежных с химией науках, применяя взаимодополняющие методы исследования. Проводит поиск, анализирует и обобщает результаты патентного поиска по тематике исследовательской работы
- ИПК 3.1 Анализирует имеющиеся нормативные документы по системам стандартизации, разработки и производству химической продукции и предлагает технические средства для решения поставленных задач
- ИПК 3.2 Производит оценку применимости стандартных и/или предложенных в результате НИР технологических решений на применимость с учетом специфики изучаемых процессов

2. Задачи освоения дисциплины

- Освоить понятийный аппарат дисциплины и понимать особенности биологических и жизненно важных свойств химических элементов-неметаллов и металлов, а также их соединений, в том числе комплексных, знать закономерности влияния состава этих соединений на механизмы биохимических процессов, протекающих в живых организмах с их участием.
- Научиться применять понятийный аппарат для решения конкретных задач исследования биоактивности, пользы или токсичности неорганических соединений, в том числе комплексных, выбирать оптимальные методы синтеза и исследования этих веществ; применять полученные знания для описания свойств биологически важных неорганических соединений; уметь обрабатывать экспериментальные данные с применением современного физико-математического аппарата для решения практических задач профессиональной деятельности.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к факультативным дисциплинам образовательной программы.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Третий семестр, зачет

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: неорганическая, аналитическая, органическая, физическая химия, математический анализ, информатика, строение вещества, вычислительные методы

в химии, иностранный язык, современные компьютерные технологии и информационные ресурсы в сети Интернет.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 2 з.е., 72 часов, из которых:

-лекнии: 12 ч.

-практические занятия: 20 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Тема 1. Предмет изучения, основные понятия и задачи бионеорганической химии. Биогенные элементы и их роль в живых организмах.

Биометаллы и бионеметаллы, их положение в Периодической системе. Металлы *in vitro*. Источники попадания металлов в организм человека, места дислокаций *in vivo*.

Биометаллы — s-элементы. Потребности человеческого организма в натрии, калии, магнии, кальции. Функции катионов щелочных и щелочноземельных металлов в биологических процессах. Натриево-калиевый насос. Кальций в процессах контроля: связывание, транспорт и накопление. Кальций и сокращение мышц. Кальций в секреции. Участие кальция в механизме свертывания крови.

Биометаллы — d-элементы. Особенности электронного строения атомов и биохимия марганца, железа, кобальта, меди, цинка, молибдена, их функции в организме человека. Типы реакций биологического окисления, электронтранспортные цепи. Окислительновосстановительные потенциалы модельных систем. Модели электронного транспорта. Сбалансированность и регуляция содержания железа, меди, цинка в организмах.

Накопление и транспорт железа. Трансферрин. Ферритин: некоторые вопросы структуры. Поглощение и обмен железа.

Молекулярный кислород. Реакции внедрения (полного и неполного), реакции без внедрения (восстановление O_2 до воды и пероксида). Примеры. Переносчики кислорода. Окисление комплексов кобальта(II) с аммиачными и аминными лигандами кислородом воздуха.

Фиксация молекулярного азота и азотный цикл. Биологическая и абиологическая фиксация.

Фосфатный перенос. Две ключевые роли фосфора в биологии. Фосфаты и биоэнергетика. Гидролиз фосфор-содержащих соединений в организме. Основная "энергетическая" реакция организма. Строение и функции АТФазы (АТФ-синтетазы). Роль магния в фосфатном переносе.

Неметаллы как биомикроэлементы: бор, кремний, селен, мышьяк, галогены (фтор, хлор, бром, иод).

Тема 2. Важнейшие биолиганды и биокомплексы

Аминокислоты. Номенклатура, структура. Классификации протеиногенных аминокислот: кислые, основные и нейтральные; алифатические, ароматические и гетероциклические; серосодержащие; полярные и неполярные; заменимые и незаменимые. Физико-химические свойства аминокислот: растворимость, изоэлектрические точки, кислотно-основные свойства. Получение и применение аминокислот.

Комплексы металлов с аминокислотами. Основные электронодонорные группы аминокислот: концевые аминогруппы, карбоксильные группы (5 типов взаимодействия с металлом). Пептидные группы как лиганды. Боковые цепи аминокислот: имидазольное

кольцо гистидина, тиоловые и тиоэфирные группы серосодержащих аминокислот, S-S-мостики цистина.

Пептиды. Особенности строения и номенклатура. Гомомерные и гетеромерные, гомодетные и гетеродетные пептиды. Пептиды в природе. Комплексы металлов с пептидами.

Комплексы кобальта(II) с аминокислотами и пептидами. Комплексы с диметилглиоксимом и родственными лигандами. Модельные соединения, в которых предполагается синглетный кислород.

Пиримидиновые основания и барбитуровые кислоты. Особенности строения и номенклатура. Барбитураты в медицине. Комплексы металлов с барбитуровыми соединениями.

Комплексы металлов с белками. Методика модельного изучения координации металлов с белками и ее ограничения. Неспецифические взаимодействия металлов с белками: комплексы цинка с сывороточным альбумином и инсулином, меди с окситоцином и вазопрессином, меди и цинка с метмиоглобином и рибонуклеазой.

Другие лиганды: нуклеиновые кислоты и нуклеотиды (фосфатные группы как лиганды), углеводы, карбоновые кислоты (СОО-лиганды), липиды (триглицериды, фосфатиды, стероиды), простые анионы (анионы H_2CO_3 , H_3PO_4 , H_2SO_4 , HF, HCl, HBr и HI), химиотерапевтические агенты.

Концепция ЖМКО. Классификационные признаки жестких и мягких катионов металлов и лигандов. Количественные параметры мягкости — кислотная (основная) сила и константа мягкости — и их оценка. Ряд мягкости-жесткости для ионов металлов. Области использования концепции ЖМКО. Симбиоз лигандов и симбиотическая стабилизация степеней окисления катионов металлов. Яды и благородные металлы с позиций ЖМКО. Взаимная избирательность металлов и лигандов, конкурирующие (связывающие) лиганды.

Тема 3. Биологическая роль неорганических соединений

Биологическая роль воды. Вода как среда. Структура воды в клетке. Вода как биохимический растворитель. Структура и свойства крепких физиологических водных растворов.

Пероксид водорода. Участие пероксида в химических и биологических процессах. Механизмы реакций с участием пероксида.

Тема 4. Биоматериалы

Требования к биоматериалам, используемым для протезирования. Классификация биокерамики по отношению к живой ткани (биоинертная, пористая, биоактивная, ресорбируемая). Керамические материалы на основе Al_2O_3 и ZrO_2 , гидрокси- и фторапатита. Биоактивная стеклокерамика. Механизм взаимодействия биокерамики с живой тканью. Ферромагнитная и радиоактивная биокерамика для лечения злокачественных опухолей. Керамика для протезирования зубов. Углеродная керамика для сердечного клапана.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения тестов по лекционному и тематическому материалу, выполнения индивидуальных заданий с последующей их презентацией, представления эссе или аналитического обзора по теме научной работы, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в третьем семестре проводится в устной форме по билетам. Билет содержит теоретический вопрос и два практических задания. Продолжительность зачета 1 час.

Примерный перечень теоретических вопросов

- 1. Биометаллы, их формы и роль в живых организмах.
- 2. Токсичность тяжелых металлов, в чем она проявляется. Причины токсичности металлов.
- 3. Детоксиканты, их состав, формы. Процессы и механизмы детоксикации.
- 4. Координационные соединения *in vivo*: особенности строения и биологического действия.
- 5. Химический состав, строение и свойства хлорофилла.
- 6. Жесткость катионов 3*d*-металлов, ее изменение с увеличением заряда ядра атома. Зависимость констант устойчивости комплексов биометаллов от жесткости катионов-комплексообразователей.
- 7. Лекарственные препараты с содержанием платины, их состав, механизмы действия.
- 8. Медьсодержащие ферменты, их типы, состав, биороль.
- 9. Биолиганды, их химическая природа. Классификация по составу, значению.
- 10. Биоактивная керамика на основе фосфатов кальция: состав, строение, функции.

Примерный перечень практических вопросов и заданий

- 1. В состав каких ферментов входят цинк, кобальт, молибден?
- 2. Как работает Na⁺/K⁺-«насос»?
- 3. Каковы формы существования Ca^{2+} *in vivo*?
- 4. Дайте характеристику гемового и негемового железа.
- 5. Каково участие ионов железа(II) и железа(III) в дыхательной цепи?
- 6. Какие лекарственные препараты содержат ионы серебра?
- 7. Какие лиганды служат для выведения радиоактивных элементов из организма?
- 8. Почему алюминий не относится к биометаллам?
- 9. Почему действие лекарственных препаратов, содержащих ионы металла, более эффективно, если металл связан в комплекс?
- 10. Растворы хлорида железа(III) вызывают коагуляцию белков, поэтому раньше их использовали в качестве кровеостанавливающего средства. На чем основано их коагулирующее действие?

Результаты зачета определяются оценками «зачтено», «незачтено».

«Зачет» ставится при выполнении заданий и по результатам собеседования на зачетном занятии, а также с учетом того, что посещение лекционных и практических занятий не менее 50 %, выполнено индивидуальное задание с последующей его презентацией, представлено эссе или аналитический обзор по теме научной работы, имеется аттестация по результатам контрольной точки.

«Незачет» ставится при одном из условий:

- не выполнены задания на зачетном занятии, не выполнено индивидуальное задание с последующей его презентацией, не представлено эссе или аналитический обзор по теме научной работы, нет аттестации по результатам контрольной точки, пропущено более 50 % лекционных и практических занятий;
- выполнены задания на зачетном занятии, не выполнено индивидуальное задание с последующей его презентацией, не представлено эссе или аналитический обзор по теме научной работы, нет аттестации по результатам контрольной точки, пропущено более 50 % лекционных и практических занятий;

— выполнены задания на зачетном занятии, выполнено индивидуальное задание с последующей его презентацией, не представлено эссе или аналитический обзор по теме научной работы, нет аттестации по результатам контрольной точки, пропущено более 50 % лекционных и практических занятий.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» - https://www.tsu.ru/sveden/education/eduop/.

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=026360
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План практических занятий по дисциплине.
 - г) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Общая химия. Биофизическая химия. Химия биогенных элементов: в 2 кн. /под ред. Ю. А. Ершова. М.: Юрайт, 2016. кн. 1-233 с.
- Общая химия. Биофизическая химия. Химия биогенных элементов: в 2 кн. /под ред. Ю. А. Ершова. - М.: Юрайт, 2016. – кн. 2 – 360 с.
- Общая и неорганическая химия. Учебник для вузов / Оганесян Э.Т., Попков В.А., Щербакова Л.И., Брель А.К. М.: Юрайт, 2016.
 - б) дополнительная литература:
- Ахметов Н. С. Общая и неорганическая химия: учебник: [для студентов, аспирантов и преподавателей химических факультетов университетов] / Н. С. Ахметов. Изд. 8-е, стереотип. Санкт-Петербург [и др.]: Лань, 2014. 743 с.
 - Ершов Ю.А., Попков В.А., Берлянд А.С., Общая химия, М., Высшая школа», 2007.
- Биофизическая химия: учебное пособие / В. Калоус, З. Павличек; пер. с чеш. А. П. Сергеева. Москва: Мир, 1985. 446 с.
 - в) ресурсы сети Интернет:
 - www.chem.msu.ru/rus/weldept.html
 - www.chem.msu.su/rus/elibrary/
 - www.chemnet.com
- Общероссийская Сеть Консультант Плюс Справочная правовая система.
 http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system

- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/
 - в) профессиональные базы данных (при наличии):
 - Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»).

15. Информация о разработчиках

Коротченко Наталья Михайловна, кандидат химических наук, доцент, кафедра неорганической химии, доцент.