Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Спецпрактикум: оптоэлектронные методы в полупроводниках

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: **Фундаментальная и прикладная физика**

Форма обучения Очная

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины

Целью освоения дисциплины является формирование следующих компетенций:

— ПК-1 —Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости;

ИПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

- Получить представления о методах исследования оптических свойств полупроводниковых материалов.
- Получить практические навыки использования методов исследования оптических свойств полупроводниковых материалов.

3. Место дисциплины в структуре образовательной программы

Дисциплина относится к Блоку 1 «Физика полупроводников. Микроэлектроника». Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Второй семестр, зачет с оценкой.

5. Входные требования для освоения дисциплины

Наличие у студента компетенций, сформированных при освоении дисциплин: Физика полупроводников, Оптика полупроводников, Теория твердого тела, Дефекты в полупроводниках Обучающийся должен уметь работать в поисковых системах и осуществлять поиск информации.

6. Язык реализации

Русский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 4 з.е., 144 часа, из которых: -лабораторные работы: 36 ч.

в том числе практическая подготовка: 36 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины, структурированное по темам

Раздел дисциплины	Содержание раздела дисциплины
Введение	Оптические константы и взаимосвязь между ними.
	Экспериментальные методы определения оптических
	констант. Классический и квантовомеханический подходы в
	теории дисперсии оптических констант.
Исследование	Внутренний фотоэффект. Фотопроводимость. Релаксация
фотопроводимости	фотопроводимости.
полупроводников	
Определение	Виды поглощения. Собственное поглощение. Прямые и
ширины	непрямые оптические переходы; форма края основного
запрещенной зоны	поглощения в прямозонных и непрямозонных
из спектра основного	полупроводниках. Влияние внешних факторов на положение
поглощения	края основного оптического поглощения.
Исследование	Неселективное поглощение свободными носителями заряда.
поглощения на	Зависимость времени жизни неравновесных носителей заряда
	от механизма рассеяния при больших энергиях поглощаемых
носителях заряда	квантов.
Исследование	Межзонная рекомбинация. Зависимость времени жизни
спектров	неравновесных носителей заряда от положения уровня
фотолюминесценции	Ферми, температуры и уровня возбуждения.
и полупроводников	Самопоглощение. Эффективность излучения. Примесное
	излучение. Донорно- акцепторные переходы.
Исследование	Внутренний квантовый выход люминесценции
характеристик	полупроводникового материала. Спектр рекомбинационного
светодиода	излучения. Инжекция носителей заряда в излучающем диоде.
	Мощность излучения диода.
Исследование	Фотодиоды с р-п переходами. Фотодиоды с поверхностными
характеристик	барьерами. Вольтамперная характеристика фотодиода.
фотодиода	Спектральная и световая характеристики фотодиода.
	Применение фотодиода в оптоэлектронике.
	Введение Исследование фотопроводимости полупроводников Определение ширины запрещенной зоны из спектра основного поглощения Исследование поглощения на свободных носителях заряда Исследование спектров фотолюминесценции и полупроводников Исследование характеристик светодиода Исследование характеристик

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости; устный опрос по теории и методике каждой лабораторной работы; устный и письменный отчет о результатах лабораторной работы и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» — https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания промежуточной аттестации

Промежуточная аттестация проводится в виде устного дифференцированного зачета. К зачету допускаются студенты, успешно прошедшие все текущие аттестации. Зачет проводится в форме собеседования по результатам выполненных лабораторных работ. Продолжительность зачета 1 час.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

11. Учебно-методическое обеспечение

а) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Γ . Г. Владимиров Физическая электроника. Эмиссия и взаимодействие частиц с твердым телом: учебное пособие/Г.Г. Владимиров; [отв. ред. А. Д. Пузовик] Спб.: издво «Лань», 2013. 367 с.
- 2. К.В. Шалимова Физика полупроводников/К.В. Шалимова 4-е изд., стер. Спб.: изд-во «Лань», 2022. 390 с.
- 3. Ансельм А.И. Введение в теорию полупроводников. Спб.: изд-во «Лань», 2022.-618 с.305, [1] с.
- 4. Зверев В.А., Кривопустова Е.В. Точилина Т.В. Оптические материалы. Спб.: изд-во «Лань», $2015.-400~\mathrm{c}$.

б) дополнительная литература:

- 1. Киреев П.С. Физика полупроводников. М.: Высшая школа, 1975. 584 с.
- 2. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука, 1977.-672 с.
- 3. Фистуль В.И. Введение в физику полупроводников. М.: Высшая школа, 1984. 352 с.
 - 4. Смит Р. Полупроводники. М.: Мир, 1982. 558 с.
- 5. Войцеховский А.В., Петров А.С., Потахова Г.И. Оптика полупроводников. Томск: Изд-во Томского ун-та, 1987. 221 с.
- 6. Мосс Т., Баррел Г., Эллис Б. Полупроводниковая оптоэлектроника. М.: Мир, 1976-432 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - 9EC ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения лабораторных занятий.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Новиков Вадим Александрович, кандидат физ.-мат. наук, ТГУ, кафедра физики полупроводников, доцент