Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДЕНО: Декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

Физика низкоразмерных структур

по направлению подготовки

03.04.02 – Физика

Направленность (профиль) подготовки: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

ПК-1 Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

ИПК-1.1. Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости

ИПК-1.2. Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

Получить представления о теоретических методах исследования, физических свойствах и практическом использовании наноразмерных полупроводниковых структур.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Физика полупроводников. Микроэлектроника». Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Первый семестр, зачет.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины необходимо знание основ квантовой механики, физики твердого тела, термодинамики и статистической физики.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 2 з.е., 28 часов, из которых:

- лекции: 14 ч.;
- практические занятия: 14 ч.;

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Электронные состояния в низкоразмерных структурах

Условия наблюдения квантово-размерных эффектов. Потенциал Кроннига-Пенни. Минизоны в сверхрешетках. Классификация сверхрешеток. Типы сверхрешеток. Композитные, модулированные сверхрешетки. Модели разрывов зон и барьера Шоттки.

Комплексная зонная структура. Методы расчета. Комплексная зонная структура алмазоподобных соединений, зависимость от гетерограницы. Электронные состояния в квантовых ямах, проволоках, точках. Примесные состояния мелких центров в квантовых ямах. Энергетический спектр электронов в низкоразмерных структурах в присутствии постоянного магнитного поля.

Тема 2. Физические свойства сверхрешеток.

Продольный и поперечный транспорт. ОДП в сверхрешетках. Влияние колебаний решетки, примесей и несовершенств гетерограницы на свойства гетероструктур.

Тема 3. Квантовый эффект Холла.

Феноменологические результаты. Условия наблюдения. Целочисленный эффект Холла, одноэлектронная теория, влияние беспорядка. Роль многоэлектронных корреляций в нецелочисленном эффекте Холла.

Тема 4. Резонансное туннелирование электронов в гетероструктурах.

Туннелирование электронов через одну границу, один барьер, двухбарьерную структуру. Условия возникновения резонансных пиков. Резонансно-туннельный диод. Методы матрицы перехода и рассеяния, их свойства. Формула Брейта-Вигнера. Модели сшивания волновых функций на границах. Квазистационарные состояния. Открытая квантовая яма, времена жизни резонансов, полуширина пика. Эффекты междолинного смешивания электронных состояний на гетерогранице.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, тестов по лекционному материалу, выполнения домашних заданий и фиксируется в форме контрольной точки не менее одного раза в семестр. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания аттестации

Зачет проводится в устной форме по билетам, содержащим вопросы по курсу, предполагающие развернутый ответ и проверяющие ПК-1 и ИПК-1.2., а также по контрольным вопросам по материалу курса, требующим краткий ответ и проверяющим ИПК-1.1. Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=22922
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Херман М. Полупроводниковые сверхрешетки. М.: Мир, 1989. 240 с.
- 2. Бехштедт Ф., Эндерлайн Р. Поверхности и границы раздела полупроводников. М.: Мир, 1990. 488 с.
- 3. Кульбачинский В.А. Двумерные, одномерные, нульмерные структуры и сверхрешетки. М.: Издательство физического ф-та МГУ, 1998. 162 с.

- 4. Воробьев Л.Е., Данило С.Н., Зегря Г.Г., Фирсов Д.А., Шалыгин В.А., Яссиевич И.Н., Берегулин Е.В. Фотоэлектрические явления в полупроводниках и размерно-квантованных структурах. Санкт-Петербург: Наука, 2001. 250 с.
- 5. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С.А. Физика низкоразмерных систем. Санкт-Петербург: Наука, 2001. 160 с.
- 6. Ю П., Кардона М. Основы физики полупроводников. М.: Физматлит, 2002. 560 с.
- 7. Гридчин В.А., Неизвестный И.Г., Шумский В.Н. Физика микросистем. Новосибирск: Изд-во НГТУ, 2006. 496 с.
- 8. Кульбачинский В.А. Физика наносистем. М.: Физмалит, 2022. 768 с.
 - б) дополнительная литература:
- 1. Тернов И.М., Жуковский В.Ч., Борисов А.В. Квантовая механика и макроскопические эффекты. М.: Изд-во МГУ, 1993. –
- 2. Рашба Э.И., Тимофеев Б.Б. Квантовый эффект Холла. ФТП, т.20, N6, с.977–1024, 1986.
- 3. Шретер Ю.Г., Ребане Ю.Т., Зыков В.А., Сидоров В.Г. Широкозонные полупроводники. Санкт-Петербург: Наука, 2001. 125 с.

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Гриняев Сергей Николаевич, доктор физ.-мат. наук, ТГУ, кафедра физики полупроводников, доцент.