Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт «Умные материалы и технологии»

УТВЕРЖДЕНО: Директор Института «Умные материалы и технологии» И.А. Курзина

Рабочая программа дисциплины

Общая и неорганическая химия

по направлению подготовки

27.03.05 Инноватика

Направленность (профиль) подготовки:
Тomsk International Science Program, с профессиональным модулем Молекулярная инженерия / Molecular Engineering

Форма обучения **Очная**

Квалификация **Инженер**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП И.А. Курзина

Председатель УМК Г.А. Воронова

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- УК-2 Способен анализировать основные этапы и закономерности исторического развития России, понимать ее место и роль в современном мире, формировать представление об особенностях российской национальной идентичности.
- ОПК-1 Способен формулировать и анализировать задачи профессиональной деятельности на основе знаний естественных, математических и технических наук, с учетом требований законодательства.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- РОУК-2.2 Умеет анализировать основные этапы и закономерности развития России в контексте мировой истории, раскрывать исторические причины и следствия развития российской территориальной, государственной, культурной, национальной и конфессиональной динамики, российские государственные интересы и роль России в мировой политике, критически осмыслять международную ситуацию, аргументированно обосновывать позицию относительно различных трактовок российской истории.
- РООПК-1.1 Знает основные положения и законы естественных, математических и технических наук, нормативы, регулирующие научную и производственную деятельность.

2. Задачи освоения дисциплины

- Освоить аппарат общей и неорганической химии и математики.
- Научиться применять понятийный аппарат общей и неорганической химии и математики для решения практических задач профессиональной деятельности.

В результате освоения дисциплины студент должен:

Знать:

– основные положения, законы и сущность современных теорий, смысл основных понятий в области общей и неорганической химии и способы их применения для решения теоретических и практических задач;

Уметь:

- решать типовые задачи, связанные с основными разделами общей и неорганической химии: газовые законы, строение атома, химическая связь, термодинамика, способы выражения концентраций растворов, закон действующих масс, химическое равновесие, закон Рауля, окислительно-восстановительные реакции, координационные соединения, кинетика химических реакций;
- использовать законы и основы общей и неорганической химии и применять их в решении практических задач;

Владеть:

– навыками расчета основных характеристик и параметров (тепловые эффекты, константы равновесия, концентрации растворов и т.д.) для описания физико-химических и биологических процессов.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к обязательной части образовательной программы Блока 1, Дисциплины (модули).

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, зачет

Семестр 2, экзамен

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

6. Язык реализации

Английский

7. Объем дисциплины

Общая трудоемкость дисциплины составляет 7 з.е., 252 часов (семестр 1-3 з.е., 108 часа; семестр 2 - 4 з.е., 144 часа), из которых:

в первом семестре:

- лекции: 28 ч.;
- семинарские занятия: 6 ч.
- практические занятия: 0 ч.;
- лабораторные работы: 30 ч.

во втором семестре:

- лекции: 28 ч.;
- семинарские занятия: 6 ч.
- практические занятия: 0 ч.;
- лабораторные работы: 30 ч.

в том числе практическая подготовка: 72 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Основные химические понятия и законы. Строение вещества. Периодический закон Д. И. Менделеева

Развитие представлений о строении атома. Характеристика состояния электрона в атоме набором квантовых чисел. Радиальная и орбитальная составляющие волновой функции. Атомные s-, p-, d-, f- орбитали и их энергия. Схема энергетических уровней многоэлектронных атомов. Принцип энергетической выгодности, принцип Паули, правило Хунда. Электронные формулы атомов и ионов. Периодичность в изменении свойств атомов элементов (радиусов атомов и ионов, энергии ионизации, электроотрицательности, сродства к электрону и др.) как следствие периодичности электронных структур. Периодичность в изменении химических свойств элементов.

Тема 2. Теории химической связи, валентности

Ковалентная связь. Механизм образования ковалентной связи (обменный, донорноакцепторный). Характеристика ковалентной связи. Эффективные заряды атомов в молекулах. Дипольные моменты и строение молекул. Основные положения метода валентных связей. Валентность элемента. Рассмотрение схем перекрывания атомных орбиталей при образовании связей в молекулах. Гибридизация волновых функций (примеры sp³ -, sp ² -, sp-гибридизаций). Заполнение гибридных орбиталей неподеленными парами электронов. Образование кратных связей. Сигма- и пи-связи, их особенности. Делокализованные пи-связи. Ионная связь. Электростатическое взаимодействие ионов. Кривая потенциальной энергии для ионной молекулы. Поляризация ионов. Зависимость поляризации ионов от типа электронной структуры, заряда и радиуса иона. Влияние поляризации ионов на свойства вещества, температуру плавления, термическую устойчивость. Типы кристаллических решеток. Теория МО-ЛКАО.

Тема 3. Закономерности химических реакций/процессов

Энергетика и направленность химических реакций. Понятие о системе, фазе, компоненте, параметрах состояния системы, термодинамических функциях. Внутренняя энергия системы. Изохорные и изобарные процессы, их тепловые эффекты. Первый закон химической термодинамики. Стандартные энтальпии образования веществ. Закон Гесса и его следствия. Зависимость энтальпии реакции от температуры. Второй закон химической термодинамики. Понятие энтропии и энергии Гиббса. Критерии самопроизвольного протекания химических процессов в изолированных и открытых системах. Обратимые и необратимые химические реакции. Признаки состояния химического равновесия.

Тема 4. Растворы

Классификация растворов. Растворимость веществ, способы выражения содержания вещества в растворе; факторы, влияющие на растворимость веществ. Диаграмма состояния воды. Коллигативные свойства разбавленных растворов неэлектролитов и электролитов. Законы Рауля и Вант-Гоффа, изотонический коэффициент. Основные положения теории электролитической диссоциации. Сильные и слабые электролиты, константа и степень диссоциации слабого электролита. Факторы, влияющие на степень электролитической диссоциации. Активность и коэффициент активности иона, ионная сила раствора.

Тема 5. Окислительно-восстановительные реакции

Электрохимические свойства растворов. Понятие о двойном электрическом слое. Равновесие на границе металл—раствор. Стандартные электродные потенциалы, ряд напряжений металлов. Сопряженные окислительно-восстановительные пары. Окислительно-восстановительные реакции в гальваническом элементе, ЭДС элемента. Электролиз как окислительно-восстановительный процесс.

Тема 6. Основы химической кинетики

Кинетика и механизмы химических реакций. Зависимость скорости реакции от концентрации реагентов. Кинетическое уравнение реакции. Константа скорости реакции и ее зависимость от температуры. механизмах реакции. Молекулярность реакции. Катализ и катализаторы. Влияние катализатора на механизм реакции. Особенности кинетики газофазных, жидкофазных и твердофазных реакций. Химическое равновесие. Обратимые и необратимые химические реакции с позиций термодинамики и кинетики. Кинетический и термодинамический подходы к описанию химического равновесия. Константа химического равновесия и различные способы ее выражения. Связь константы

химического равновесия со стандартным изменением энергии Гиббса. Температурная зависимость константы равновесия. Смещение химического равновесия при изменении условий.

Тема 7. Введение в неорганическую химию

Предмет неорганической химии, ее теоретические основы и практическое значение. Распространенность химических элементов на Земле и в космосе. Связь распространенности химических элементов на земле со строением атомных ядер и электронных оболочек атомов, ионов.

Тема 8. Водород и галогены

Химия неметаллов. Проблема размещения водорода в Периодической системе. Молекулярный водород, физические и химические свойства; получение водорода в лаборатории и промышленности; атомарный водород. Применение водорода, роль водорода в современной энергетике. Соединения водорода с металлами и неметаллами. Химические аккумуляторы водорода. Общая характеристика семейства галогенов. Распространение галогенов в природе, получение свободных галогенов в промышленности и в лаборатории, токсичность галогенов. Применение галогенов в промышленности и технике. Строение двухатомных молеку галогенов (метод МО). Физические и химические свойства молекулярных галогенов, их окислительные свойства, взаимодействие с металлами и неметаллами. Галогеноводороды, их физические и химические свойства, способы получения. Растворы галогеноводородов в воде, изменение силы галогеноводородных кислот в ряду НF—НІ. Кислоты плавиковая и соляная, получение соляной кислоты в промышленности, свойства; получение хлоридов.

Тема 9. Кислород и халькогены

Общая характеристика главной подгруппы шестой группы. Кислород и его соединения. Строение молекулы кислорода с позиции метода МО. Получение кислорода в лаборатории и промышленности, жидкий кислород. Физические и химические свойства молекулярного кислорода, его применение. Важнейшие оксиды металлов и неметаллов, классы оксидов, типы химической связи в них, физические и химические свойства оксидов. Вода как важнейшее соединение кислорода, роль воды в биосфере и геосфере. Получение, строение молекулы воды. Физические и химические свойства обычной и тяжелой воды. Ассоциация молекул воды, радиолиз, термическая диссоциация.

Формы нахождения в природе серы, получение и применение серы. Оксиды серы(IV, VI), их строение, физические и химические свойства. Сероводород, сульфаны; кислотно-основные свойств водных растворов водородных соединений серы; сульфиды, полисульфиды, получение и свойства. Кислородсодержащие кислоты и их соли. Одноядерные кислоты серы: сульфоксиловая кислота; сернистая кислота, строение, получение, свойства. Сульфиты и гидросульфиты, их термическая устойчивость, окислительно-восстановительные свойства, гидролиз в водных растворах. Семейство серной кислоты: кислоты серная, тиосерная, надсерная и их соли; фторсульфоновая, нитрозилсерная кислоты. Серная кислота как одна из важнейших минеральных кислот, ее применение. Свойства серной кислоты, методы получения.

Тема 10. Элементы пятой группы

Общая характеристика элементов главной подгруппы пятой группы. Химия характеристических элементов — азота, фосфора. Распространенность и нахождение

азота в природе, получение азота в лаборатории и промышленности, применение молекулярного азота, проблема связывания атмосферного азота (роль нитрогенильных комплексов). Физические и химические свойства молекулярного азота. Строение молекулы азота в методах МО и ВС.

Галогениды азота, их свойства. Аммиак: строение, физические и химические свойства, получение в лаборатории и промышленности; гидроксид аммония, соли аммония, их получение и свойства. Применение аммиака и солей аммония. Получение, свойства и применение гидразина, гидроксиламина и их солей. Получение и свойства азотистоводородной кислоты и азидов.

Кислородные соединения азота. Строения и свойства азотистой кислоты получение, кислотные и окислительно-восстановительные свойства, нитриты. Азотная кислота: строение молекулы, физические и химические свойства, получение в промышленности. Зависимость состава продуктов восстановления азотной кислоты металлами от концентрации кислоты и природы металла.

Формы нахождения фосфора в природе. Аллотропные модификации фосфора. Получение и применение красного и белого фосфора в промышленности. Строение белого и красного фосфора, физические и химические свойства. Оксиды фосфора (III, V): получение, строение молекул, свойства. Кислородсодержащие кислоты фосфора. Общая характеристика элементов главной подгруппы пятой группы. Физические и химические свойства молекулярного азота. Строение молекулы азота в методах МО и ВС.

Тема 11. Элементы четвертой группы

Общая характеристика главной подгруппы четвертой группы, переход в группе от неметаллических (углерод, кремний) к металлическим свойствам (германий, олово, свинец). Химия характеристических элементов — углерода и кремния. Формы нахождения углерода в природе, способность углерода образовывать связи С–С различной кратности, многообразие органических и неорганических соединений углерода.

Аллотропические формы углероды (графит, алмаз, карбин, фуллерены, графен): получение, структура, свойства, применение. Активированный уголь как адсорбент. Соединения углерода с металлами и неметаллами. Важнейшие карбиды, их классификация по типу химической связи, применение карбидов в технике и химической промышленности в качестве тугоплавких, высокотвердых материалов. Галогениды углерода: четыреххлористый углерод, хлороформ, фторпроизводные углерода и их применение. Металлоорганические соединения углерода.

Кислородные соединения углерода: оксид углерода(II), строение молекулы (методы МО и ВС), получение, химические свойства. Оксид углерода(IV), получение, строение молекулы, физические и химические свойства, применение.

Кремний. Получение кремния, кристаллическая структура кремния, физические и химические свойства, кремний как полупроводник. Соединения кремния с металлами и неметаллами: силициды, их классификация по типу химической связи, применение; галогениды, гексафторокремниевая кислота, ее соли. Карбид кремния и материалы на его основе. Силаны, получение, свойства, применение. Сравнение свойств кислородных соединений и галогенидов углерода и кремния. Важнейшие кремнийорганические соединения: силоксан, силиконы, их применение в технике.

Минералы алюминия, переработка боксита. Получение металлического алюминия, физические и химические свойства алюминия. Сплавы алюминия, их применение. Получение алюминатов методом твердофазного синтеза, их свойства. Галогениды алюминия. Соли алюминия, гидролиз солей алюминия и алюминатов; получение и строение безводных галогенидов алюминия. Комплексные соединения и двойные соли алюминия. Диагональное сходство свойств соединений бериллия и алюминия. Применение соединений алюминия. Общая характеристика элементов подгруппы галлия.

Тема 13. Химия ѕ-элементов

Металлы, распространение в природе, методы получения из природных соединений, очистка, физические и химические свойства. Сплавы, получение, понятие о физико-химическом анализе, диаграммы плавкости. Сплавы на основе твердых растворов замещения и внедрения, эвтектик, интерметаллидов. Применение металлов и сплавов.

Щелочные металлы и их соединения. Нахождение в природе щелочных элементов, важнейшие минералы, получение и свойства щелочных металлов. Изменение химической активности щелочных металлов в ряду литий-цезий по отношение к воде, кислороду, азоту. Соединения щелочных элементов: оксиды, пероксиды, супероксиды, озониды, нитриды, гидриды; гидроксиды, их получение, строение, свойства, применение; соли щелочных металлов (нитраты, сульфаты, галогениды), комплексные соединения. Изменение силы оснований в растворе, термической устойчивости карбонатов, нитратов, сульфатов в ряду щелочных элементов. Особенности химии лития. Биологическая роль соединений щелочных элементов, применение их в промышленности, калийные удобрения.

Щелочноземельные металлы и их соединения. Сравнительная характеристика свойств щелочноземельных металлов и их соединений. Получение, свойства металлического бериллия. Оксид, гидроксид бериллия, их амфотерность. Средние и основные соли бериллия, оксобериллаты, их гидролиз; комплексные соли бериллия. Галогениды бериллия, получение, строение, свойства. Токсичность бериллия и его соединений.

Минералы магния, получение магния из минерального сырья, физические и химические свойства металлического магния. Сплавы магния, их значение для современной техники. Оксид и гидроксид магния, соли, гидролиз солей магния. Галогениды, получение безводных галогенидов магния, магнезиальный цемент. Диагональное сходство свойств соединений магния и лития.

Элементы подгруппы кальция. Минералы кальция (известняк, мел, мрамор, гипс), стронция (целестин, стронцианит), бария (тяжелый шпат, витерит), получение металлов, их физические и химические свойства. Гидриды элементов подгруппы кальция, получение, свойства, применение. Оксиды и гидроксиды (гашеная и негашеная известь), галогениды, нитраты, малорастворимые сульфаты, карбонаты, оксалаты.

Тема 14. Переходные элементы

Положение d-элементов в Периодической системе. Электронное строение и основные степени окисления. Способность d-элементов к комплексообразованию. Закономерности изменения свойств d-металлов в 4, 5 и 6 периодах. Природа d-сжатия и ее следствия.

Элементы группы III Б, IV Б, V Б, VI Б, VII Б. Общая характеристика каждой из групп. Соединения III-VII Б группы- получение и свойства. Комплексные соединения. Сопоставление химии элементов III-VII А и III-VII Б групп. Применение элементов III-VII Б групп и их соединений.

Тема 15. Благородные газы

Особенности электронного строения атомов инертных газов. Неустойчивость двухатомных молекул инертных газов. Физические свойства. Нахождение инертных газов в природе, способы разделения их смесей. Применение.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости, проведения контрольных работ, тестов по лекционному материалу, выполнения домашних заданий, и фиксируется в форме контрольной точки не менее одного раза в семестр.

Оценочные материалы текущего контроля размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в письменной форме по билетам. Билет состоит из 2 вопросов. Продолжительность зачета 1,5 часа.

Экзамен во втором семестре проводится в письменной форме по билетам. Экзаменационный билет состоит из 5 вопросов. Продолжительность экзамена 1,5 часа.

Оценочные материалы для проведения промежуточной аттестации размещены на сайте ТГУ в разделе «Информация об образовательной программе» – https://www.tsu.ru/sveden/education/eduop/

11. Учебно-методическое обеспечение

- a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/course/view.php?id=35068 (2 семестр)
- б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.
 - в) План семинарских / практических занятий по дисциплине.
 - г) Методические указания по проведению лабораторных работ.
 - д) Методические указания по организации самостоятельной работы студентов.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- 1. Chemistry. Edited by Korovin N.V., 2nd edition, M., High school, 1990.
- 2. Chemistry. Frolov V.V., 3rd edition, M., High school, 1986.
- 3. General Chemistry. Glinka N.L., 1985.
- 4. Plakidkin A.A., Stas N.F. 12 laboratory works on general chemistry.
- 5. Stas N.F., Liseckii V.N. Exercises, tasks and questions on general chemistry. Tomsk, 2002.
- 6. Glinka N.L. Exercises and tasks on general chemistry. M., High school, 1986.
- 7. Vasiliev A.A. Chemistry, TPU Press, 1998.
- 8. Bogoroditskii V.N. Electro technical materials, M., High school, 1996.
- 9. Russel J.B. General Chemistry. McGraw-Hill Inc., 1992.
- 10. Sisler H.H. General Chemistry. A systematic approach. MacMillan, NY., 1954.

- б) Дополнительная литература:
- 1. Fundamentals of General Chemistry. Terms and Problems in Tests: In 2 parts. P.1. Terms and Examples in Tasks Study guide By: Петрова Т.П.. Казань Казанский национальный исследовательский технологический университет 2020 100 с. Language: Russian, База данных: Сводный каталог ЭБС НБ ТГУ
- 2. Fundamentals of General Chemistry. Terms and Problems in Tests: In 2 parts. P.2. Final examination tests Study guide By: Петрова Т.П.. Казань Казанский национальный исследовательский технологический университет 2020 80 с. Language: Russian, База данных: Сводный каталог ЭБС НБ ТГУ
- 3. General chemistry Transl. from the Russian by D. Sobolev By: Glinka, Nikolaj Leonidovich. M. MIR 1970 704941 636 p. fig. Language: English, База данных: Электронный каталог НБ ТГУ
- 4. Introduction to General Chemistry By: McCoy, Herbert Newby; Ethel M. Terry. Edition: 2nd ed. İstanbul : e-Kitap Projesi. 2015. eBook., База данных: eBook Index
- 5. General Chemistry By: Linus Pauling. Series: Dover Books on Chemistry. [N.p.]: Dover Publications. 2014. eBook., База данных: eBook Index
- 6. General and Inorganic Chemistry By: Ray, Bidhan Chandra; Das, Satyanarayan; Mukherjee, Jaya. Edition: Revised edition. London: New Central Book Agency. 2018. eBook., База данных: eBook Index
- 7. Inorganic Chemistry: An Industrial and Environmental Perspective By: Thomas W. Swaddle. San Diego: Academic Press. 1997. eBook., База данных: eBook Academic Collection (EBSCOhost)
- 8. Advances in Inorganic Chemistry: Recent Highlights II By: Rudi van Eldik. Series: ISSN. [N.p.]: Academic Press. 2022. eBook., База данных: eBook Index Advances in Inorganic Chemistry: Recent Highlights By: Rudi van Eldik; Colin D. Hubbard. Series: ISSN. [N.p.]: Academic Press. 2021. eBook., База данных: eBook Index.
 - в) ресурсы сети Интернет:
 - открытые онлайн-курсы
 - Журнал «Эксперт» http://www.expert.ru
- Официальный сайт Федеральной службы государственной статистики $P\Phi$ www.gsk.ru
 - Официальный сайт Всемирного банка www.worldbank.org
- Общероссийская Сеть КонсультантПлюс Справочная правовая система. http://www.consultant.ru

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office On-eNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/

- ЭБС ZNANIUM.com https://znanium.com/
- ЭБС IPRbooks http://www.iprbookshop.ru/
- в) профессиональные базы данных (при наличии):
- Университетская информационная система РОССИЯ https://uisrussia.msu.ru/
- Единая межведомственная информационно-статистическая система (EMИСС) https://www.fedstat.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

Лабораторные аудитории для практических занятий. Имеется следующее оборудование рН-метры, аналитические весы, муфельные печи, водоструйные насосы, дистиллятор, химическая посуда, реактивы, сушильные шкафы.

Аудитории для проведения занятий лекционного и семинарского типа индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации в смешенном формате («Актру»), 311 аудитория 6 корпуса НИ ТГУ, 19 аудитория 12 корпуса НИ ТГУ.

15. Информация о разработчиках

Воронова Гульнара Альфридовна, к.х.н., доцент Химический факультет ТГУ Санду Мария Петровна, к.х.н., ассистент кафедры Химический факультет ТГУ