Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

УТВЕРЖДАЮ: декан физического факультета С.Н. Филимонов

Рабочая программа дисциплины

ПРОГРАММНАЯ ВИЗУАЛИЗАЦИЯ ГЕОДАННЫХ

по направлению подготовки

03.04.02 Физика

Направленность (профиль) подготовки: «Фундаментальная и прикладная физика»

Форма обучения **Очная**

Квалификация **Магистратура**

Год приема **2024**

СОГЛАСОВАНО: Руководитель ОП О.Н. Чайковская

Председатель УМК О.М. Сюсина

Томск - 2024

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

— ПК-1 — Способен самостоятельно ставить конкретные задачи научных исследований в области физики и решать их с помощью современной аппаратуры и информационных технологий с использованием новейшего российского и зарубежного опыта;

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИПК-1.1 Знает основные стратегии исследований в выбранной области физики, критерии эффективности, ограничения применимости;
- ИПК-1.2 Умеет выделять и систематизировать основные цели исследований в выбранной области физики, извлекать информацию из различных источников, включая периодическую печать и электронные коммуникации, представлять её в понятном виде и эффективно использовать.

2. Задачи освоения дисциплины

- Освоить аппарат создания различных интерактивных демонстрационных программ с использованием языков программирования высокого уровня и применять их в геоинформационных системах (ГИС).
- Научиться применять понятийный аппарат **программной визуализации геоданных** для разработки на языках программирования высокого уровня для решения практических задач профессиональной деятельности.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине Семестр 2, зачет с оценкой.

5. Входные требования для освоения дисциплины

Для успешного освоения дисциплины требуются компетенции, сформированные в ходе освоения образовательных программ предшествующего уровня образования.

Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: математический анализ; линейная алгебра и аналитическая геометрия; дифференциальные уравнения; программирование; технологии программирования; мультимедиа технологии; компьютерная геометрия и графика.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 4 з.е., 144 часов, из которых:

– практические занятия: 24 ч.;

в том числе практическая подготовка: 24 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Построение прототипа будущего ПО по визуализации геоданных

Выбор навигационной системы (Galileo, Цикада, NAVSAT, IRNSS, Бэйдоу, GPS, ГЛОНАСС).

UI/UX дизайн ПО визуализации геоданных (интерфейс проекта, трассировка движения спутников, зоны видимости КА навигационной системы, управляющие элементы).

Тема 2. Разработка ПО используя прототип на языке высокого уровня

Экспортирование карты мира тар. јрд;

Расчет коэффициента перехода от км к пикселам;

Изображение сетки широт и долгот на карте. Добавить подписи со значениями;

Выбор шага сетки (в град.) и отображение / скрытие сетки.

Реализация невозмущенного кеплеровского движения.

Определение начальных значений элементов орбиты каждого КА из спутников системы.

Переход от элементов орбиты к векторам положения и скорости и обратно.

Переход от календарной к юлианской дате.

Вычисления звездного времени.

Вычисление матрицы поворота.

Вычисление сферических координат.

Переход от сферических координат к пикселам.

Визуализация трасс спутников на карте.

Создание интерфейса проекта.

Построение зон видимости КА навигационной системы.

9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости и создания проекта по предложенному плану, и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет с оценкой во втором семестре проводится в виде защиты своего проекта. Выступление перед группой с презентацией и демонстрацией ПО. Продолжительность зачета 1,5 часа.

Результаты зачета с оценкой определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «отлично» зависит от посещаемости (не менее 80% занятий), дизайна ПО (соответствовала правилам UI/UX дизайна), функциональной части (все заявленные элементы ПО были внедрены и выполнены), творческий подход к созданию ПО (придумать новую опцию).

Оценка «хорошо» зависит от посещаемости (не менее 50% занятий), дизайна ПО (не обязательно 100% соответствовать всем правилам UI/UX дизайна), функциональной части (все заявленные элементы ПО были внедрены и выполнены).

Оценка «удовлетворительно» зависит от посещаемости (не менее 30% занятий), дизайн не рассматривается, функциональная часть (все заявленные элементы ПО были внедрены и выполнены).

11. Учебно-метолическое обеспечение

a) Электронный учебный курс по дисциплине в электронном университете «Moodle» - https://moodle.tsu.ru/course/view.php?id=24963

б) Оценочные материалы текущего контроля и промежуточной аттестации по дисциплине.

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
 - Бордовицына Т.В., Авдюшев В.А. Теория движения искусственных спутников Земли. Аналитические и численные методы: учебное пособие. Томск. Изд-во Том. ун-та. 2007.—220 с
- б) дополнительная литература:
 - Антонович К.М. Использование спутниковых радионавигационных систем в геодезии. Φ ГУП «Картгеоцентр». 2005. Т 1. 333 с. 3.
- в) ресурсы сети Интернет:
 - http://astro.tsu.ru/TGP/ 4
 - http://astro.tsu.ru/DynAS/
 - https://www.java.com/ru/
 - https://www.oracle.com/ru/java/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint;
 - Java;
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ— http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system— Электронная библиотека (репозиторий) ТГУ—
- http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - ЭБС IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Аудитории для проведения занятий лекционного типа.

Аудитории для проведения занятий семинарского типа, индивидуальных и групповых консультаций, текущего контроля и промежуточной аттестации.

Помещения для самостоятельной работы, оснащенные компьютерной техникой и доступом к сети Интернет, в электронную информационно-образовательную среду и к информационным справочным системам.

15. Информация о разработчиках

Баньщикова Мария Александровна, к.ф.-м.н., доцент, ФФ ТГУ, доцент